首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the proximity effect between conventional superconductor and magnetic normal metal with a spin-orbit interaction of the Rashba type. Using the phenomenological Ginzburg-Landau theory and the quasiclassical Eilenberger approach it is demonstrated that the Josephson junction with such a metal as a weak link has a special nonsinusoidal current-phase relation. The ground state of this junction is characterized by the finite phase difference phi{0}, which is proportional to the strength of the spin-orbit interaction and the exchange field in the normal metal. The proposed mechanism of the phi{0} junction formation gives a direct coupling between the superconducting current and the magnetic moment in the weak link. Therefore the phi{0} junctions open interesting perspectives for the superconducting spintronics.  相似文献   

2.
We consider a long superconductor-ferromagnet-superconductor junction with one spin-active region. It is shown that an odd number of Cooper pairs cannot have a long-range propagation when there is only one spin-active region. When the temperature is much lower than the Thouless energy, the coherent transport of two Cooper pairs becomes the dominant process and the superharmonic current-phase relation is obtained (I ∝ sin2?).  相似文献   

3.
We study the ac Josephson effect in a superconductor-ferromagnet heterostructure with a variable magnetic configuration. The system supports triplet proximity correlations whose dynamics is coupled to the magnetic dynamics. This feedback dramatically modifies the behavior of the junction. The current-phase relation becomes double periodic at both very low and high Josephson frequencies omegaJ. At intermediate frequencies, the periodicity in omegaJt may be lost.  相似文献   

4.
The universal phase diagram of a 2D surface superconductor with generic Rashba interaction in a parallel magnetic field is found. In addition to the uniform BCS state, we find two inhomogeneous superconductive states, the stripe phase with Δ (r) ∝ cos(Qr) at high magnetic fields, and a new “helical” phase with Δ(r) ∝ exp(iQr) which intervenes between the BCS state and stripe phase at an intermediate magnetic field and temperature. We prove that the ground state for helical phase carries no current.  相似文献   

5.
We fabricated high quality Nb/Al2O3/Ni(0.6)Cu(0.4)/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a steplike thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microm (1.3lambda(J)) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying approximately 6.7% of the magnetic flux quantum Phi(0). The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.  相似文献   

6.
We study a two-electron system in a double-layer quantum dot under a magnetic field by means of the exact diagonalization of the Hamiltonian matrix.We find that discontinuous ground-state energy transitions are induced by an external magnetic field in the case of strong coupling.However,in the case of weak coupling,the angular momentum L of the true ground state does not change in accordance with the change of the magnetic field B and remains L=0.  相似文献   

7.
A theory for the voltage-current characteristic in high TC DC SQUIDs (Superconducting Quantum Interference Devices), which accounts for a second harmonic in the junction current-phase relation, is developed. It is shown that the small inductance DC SQUIDs can be used for the investigation of the second harmonic via its influence on the voltage-flux curve. If the second harmonic is perceptible, then for large inductance DC SQUIDs the theory can explain the substantial deviations of the experimental voltage modulation from theoretical predictions and computer simulations based on conventional sinusoidal current-phase relation. The detail comparison with the experiment is performed.  相似文献   

8.
使用双杂质的Anderson模型的哈密顿量,从理论上研究了一个嵌入耦合量子点的介观Aharonov-Bohm环系统处在Kondo区时的基态性质, 并用slave-boson平均场方法求解了哈密顿量. 结果表明, 在这个系统中, 宇称效应和复杂的电流 相位关系的出现反映了两个量子点可以相干耦合. 关键词: 持续电流 耦合量子点 宇称效应 Kondo效应  相似文献   

9.
The escape rate from the zero voltage state in a superconducting Josephson junction (JJ) is determined by the temperature, but it saturates at low temperature due to macroscopic quantum tunneling (MQT). Complications due to d-wave symmetry in a high temperature superconductor, like low energy quasiparticles and an unconventional current-phase relation, may influence the escape rate. We report, for the first time to our knowledge, the observation of MQT in a YBa(2)Cu(3)O(7-delta) grain boundary biepitaxial JJ. This proves that dissipation can be significantly reduced by a proper junction configuration, which is of significance for quantum coherence.  相似文献   

10.
We have measured the current-phase relationship I(varphi) of symmetric 45 degrees YBa2Cu3O7-x grain boundary Josephson junctions. Substantial deviations of the Josephson current from conventional tunnel-junction behavior have been observed: (i) The critical current exhibits, as a function of temperature T, a local minimum at a temperature T*. (ii) At T approximately T*, the first harmonic of I(phi) changes sign. (iii) For T相似文献   

11.
We have investigated the ground state phase diagram of the 1D AF spin- Heisenberg model with the staggered Dzyaloshinskii-Moriya (DM) interaction in an external uniform magnetic field H. We have used the exact diagonalization technique. In the absence of the uniform magnetic field (H=0), we have shown that the DM interaction induces a staggered chiral phase. The staggered chiral phase remains stable even in the presence of the uniform magnetic field. We have identified that the ground state phase diagram consists of four Luttinger liquid, staggered chiral, spin-flop, and ferromagnetic phases.  相似文献   

12.
Hartree–Fock theory predicts a stripe-like ground state for the two-dimensional electron gas in a bilayer quantum Hall system in a quantizing magnetic field at filling factor 4N+1 (with N>0). This stripe state contains quasi-1D linear coherent regions where electrons are delocalized across both wells and which support low-energy collective excitations in the form of phonons and pseudospin waves. We have recently computed the dispersion relation of these low-energy modes in the generalized random phase approximation. In this work, we propose an effective pseudospin model in which the stripe state is modeled as an array of coupled 1D anisotropic XY systems. The coupling constants and stiffness of our model are extracted from the density and pseudospin response functions computed in the GRPA.  相似文献   

13.
We compare our results for the temperature and bridge-length dependence of the critical supercurrent in ion-implanted molybdenum weak links with a new theory by Likharev and Yakobson. This is the first such comparison to their theory, and quantitative agreement is found. Also, at temperatures for which Likharev and Yakobson predict a sinusoidal current-phase relation, the rf response of our weak links agrees well with shunted junction model computations based on a sinusoidal current-phase relation.  相似文献   

14.
We report detailed measurements of the low temperature magnetic phase diagram of Er2Ti2O7. Heat capacity and time-of-flight neutron scattering studies of single crystals reveal unconventional low-energy states. Er3+ magnetic ions reside on a pyrochlore lattice in Er2Ti2O7, where local XY anisotropy and antiferromagnetic interactions give rise to a unique frustrated system. In zero field, the ground state exhibits coexisting short and long-range order, accompanied by soft collective spin excitations previously believed to be absent. The application of finite magnetic fields tunes the ground state continuously through a landscape of noncollinear phases, divided by a zero temperature phase transition at micro{0}H{c} approximately 1.5 T. The characteristic energy scale for spin fluctuations is seen to vanish at the critical point, as expected for a second order quantum phase transition driven by quantum fluctuations.  相似文献   

15.
The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L =0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.  相似文献   

16.
We propose a Josephson junction array which can be tuned into an unconventional insulating state by varying external magnetic field. This insulating state retains a gap to half-vortices; as a consequence, such an array with nontrivial global geometry exhibits a ground state degeneracy. This degeneracy is protected from the effects of external noise. We compute the gaps, separating higher energy states from the degenerate ground state, and we discuss experiments probing the unusual properties of this insulator.  相似文献   

17.
We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.  相似文献   

18.
We develop a variational many-body approach within a second quantized formulation for a few-electron system in a parabolic two-dimensional quantum dot (QD). By way of application, the nature of the ground state of a two-electron system in a parabolic QD in a broad range of magnetic fields is theoretically investigated. Various phase transitions on the basis of the resulting analytical expressions for energy of the system have been investigated: First, the well-known transition from a maximum density droplet to a Wigner phase in a magnetic field is obtained, provided that the QD is in conditions of weak confinement. Furthermore, in the case of relatively strong QD confinement and weak magnetic fields, a rotationally symmetric spin-singlet state is the ground state of the system. However, in a strong magnetic field and for the same QD confinement, a broken-symmetry spin-singlet state appears to be energetically favored over the symmetric spin-singlet state. A first investigation of such a broken-symmetry spin-singlet phase in a QD in a magnetic field is shown to be an important application of the proposed technique. The text was submitted by the authors in English.  相似文献   

19.
A. V. Zaitsev 《JETP Letters》2006,83(6):233-237
Josephson current in SFcFS junctions with arbitrary transparency of the constriction (c) is investigated. The emphasis is on the analysis of the supercurrent dependencies on the misorientation angle θ between the in-plane magnetizations of diffusive ferromagnetic layers (F). It is found that the current-phase relation I(φ) may be radically modified with the θ variation: the harmonic I 1 sin φ vanishes for a definite value of θ provided that, for an identical orientation of the magnetizations (θ = 0), the junction is in the “π” state. The Josephson current may exhibit a nonmonotonic dependence on the misorientation angle both for realization of the “0” and “π” state at θ = 0. We also analyze the effect of the exchange field induced enhancement of the critical current, which may occur in a definite range of θ. The text was submitted by the author in English.  相似文献   

20.
The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson junctions shows a spontaneous half quantum vortex, sustained by a supercurrent of undetermined sign. This supercurrent flows in the electrode of a Josephson junction used as a detector and produces a phi(0)/4 shift in its magnetic diffraction pattern. We have measured the statistics of the positive or the negative sign shift occurring at the superconducting transition of such a junction. The randomness of the shift sign, the reproducibility of its magnitude, and the possibility of achieving exact flux compensation upon field cooling are the features which show that 0-pi junctions behave as classical spins, just as magnetic nanoparticles with uniaxial anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号