首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions.  相似文献   

2.
This perspective illustrates the coordination features of complexes constructed by 1,2,4-triazole derivatives and transition metal ions which belong to Group IIB, namely Zn(II), Cd(II) and Hg(II), demonstrates their behaviors in thermal stabilities, gas or liquid adsorption, fluorescence and nonlinear optical properties and also discusses the relation between their properties and crystal structures. Various 1,2,4-triazole derivatives containing versatile donor sites for coordination can be obtained through introducing different substituent groups to C3, N4 and C5 positions, thus offering rich coordination modes. The structures of these complexes rely on their triazole ligands, as well as mixed ligands, metal ions, anions and synthetic conditions. Obviously, the diversity in structure induces the controllability of properties, since the properties are influenced by several factors, which is significant for the applications of potential multifunctional materials.  相似文献   

3.
The present work proposes the use of Agave sisalana (sisal fiber) as an natural adsorbent for ions Pb(II) and Cd(II) biosorption from natural waters. The flame atomic absorption spectrometry was used for quantitative determination and study of the ions Pb(II) and Cd(II) adsorption on the solid phase. The Fourier transform infrared spectroscopy (FT IR) was used to investigate the sisal structure and the specific BET surface area was analyzed. The biosorption potential of sisal as biosorbent for the removal of the ions Pb(II) and Cd(II) from aqueous solution was investigate considering the followings parameters: pH, biomass amount and contact time. Langmuir and Freundlich isotherms were used to evaluate adsorption behavior of the ions on this solid phase. The results showed that sisal has a surface area to adsorption of 0.0233 m2 g− 1, and the OH and CO functional groups are the main involved in the biosorption. The best interpretation for the experimental data was given by Freundlich isotherm that proposes a monolayer sorption with a heterogeneous energetic distribution of active sites, accompanied by interactions between sorbed molecules. The maximum monolayer biosorption capacity was found to be 1.85 mg g− 1 for Cd (II) and 1.34 mg g− 1 for Pb (II) at pH 7 and 296 K. This phase solid can be used for biosorption of cadmium and lead in polluted natural waters.  相似文献   

4.
Four novel heterocyclic1,3,4-oxadiazole, 1,2,4-triazole derivatives, namely: 5-[1-amino-3-(methylsulfanyl)propyl]-1,3,4-oxadiazole-2(3H)-thione (4), 4-amino-5-[1-amino-3-(methylsulfanyl)propyl]-4H-1,2,4-triazole-3-thiol (5), 1-amino-3-[1-amino-3-(methylsulfanyl)propyl]-1H-1,2,4-triazole-5-thiol (7), and 5-[1-amino-3-(methylsulfanyl)propyl]-1H-1,2,4-triazole-3-thiol (9) have been synthesized from l-methionine and characterized by different spectroscopic techniques (FT-IR, UV–Vis, 1H NMR, 13C NMR and MS). Complex formation with Hg++ and Fe+++ ions were formed from the four heterocyclic 4, 5, 7 and 9. The antimicrobial activities for synthetic intermediates and final four products were assisted using paper disk diffusion method against Gram-negative bacteria: Escherichia coli, Pseudomonas aeroginosae and Gram-positive bacteria: Staphylococus aureus 25923, Staphylococus aureus 43300 and showed variant activity against some of the microorganisms tested.  相似文献   

5.
The influence of the concentration of a complexing ion on the sorption recovery of nickel, cobalt, mercury, and lead ions from aqueous solutions by a phosphorus-containing polymeric polybutadiene-based sorbent was studied. Sorption isotherms of the studied metal ions were processed by the Langmuir and Freindlich models. The affinity of metal ions to the functional groups of a sorbent and the stability of complexes were established to decrease in the order Hg(II) > Pb(II) > Co(II) > Ni(II).  相似文献   

6.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

7.
Summary Synthesis of MBAMT (3-methyl-4-benzylideneamino-5-mercapto-1,2,4-triazole) and its IR and NMR spectral data are reported. The high stability of the characteristically coloured chelates with Cu(II), Co(II), Ni(II), Pd(II), Pt(IV) and Rh(III) has been made the basis for their efficient ascending TLC separations on silica gel G layers, when present together. Results of four different solvent systems are included to assess efficient resolution of the chelates along with their limits of identification and separation. TLC separations, followed by the ring colorimetric determination of the six metal ions (as ternary mixtures) are tabulated.MBAMT=3-methyl-4-benzylideneamino-5-mercapto-1,2,4-triazole.  相似文献   

8.
Silica gel modified with 3-aminopropyltrimethoxysilane was anchored with nicotinaldehyde to prepare a new chelating surface (or matrix). It was synthesized and characterized by elemental analysis, cross-polarization magic-angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance infrared Fourier-transform spectroscopy, nitrogen adsorption–desorption isotherm, Brunauer–Emmett–Teller surface area, and Barrett–Joyner–Halenda pore sizes. The new surface exhibits good chemical and thermal stability as determined by thermogravimetry curves. This new organic–inorganic material was used for preconcentration of Hg(II), Pb(II), Zn(II), and Cd(II) from water prior to their determination by inductively coupled plasma atomic emission spectrometry. The optimum pH for quantitative sorption of these metal ions is in the range of 6–8, and the sorption capacity is in range of 486–1,449 μmol/g. By batch method, 95 % extraction takes ≤30 min. All the metals could be desorbed with a solution of hydrochloric acid (6 N) without loss of the expensive ligand. Solutions of the metal ions were prepared by dissolution of the nitrate solution.  相似文献   

9.
Removal of Pb2+ and Ni2+ from aqueous solutions by sorption onto natural bentonite was investigated. Experiments were carried out as a function of particle size, the amount of bentonite, pH, concentration of metals, contact time, and temperature. The adsorption patterns of metal ions onto followed the Langmuir, Freundlich, and Dubinin-Radushkevich isotherms. This included adsorption isotherms of single-metal solutions at 303 K by batch experiments. The thermodynamic parameters (DeltaH,DeltaS,DeltaG) for Pb2+ and Ni2+ sorption onto bentonite were also determined from the temperature dependence. The adsorptions were endothermic reactions. The results suggested that natural bentonite is suitable as a sorbent material for recovery and adsorption of metal ions from aqueous solutions.  相似文献   

10.
The adsorption of toxic heavy metal cations, i.e., Cu(II), Cd(II), and Pb(II), from metal-EDTA mixture solutions on a composite adsorbent having a heterogeneous surface, i.e., bauxite waste red mud, has been investigated and modeled with the aid of a modified surface complexation approach in respect to pH and complexant dependency of heavy metal adsorption. EDTA was selected as the modeling ligand in view of its wide usage as an anthropogenic chelating agent and abundance in natural waters. The adsorption experiments were conducted for metal salts (nitrates), metal-EDTA complexes alone, or in mixtures containing (metal+metal-EDTA). The adsorption equilibrium constants for the metal ions and metal-EDTA complexes were calculated. For all studied cases, the solid adsorbent phase concentrations of the adsorbed metal and metal-EDTA complexes were found by using the derived model equations with excellent compatibility of experimental and theoretically generated adsorption isotherms. The model was useful for metal and metal-EDTA mixture solutions either at their natural pH of equilibration with the sorbent, or after pH elevation with NaOH titration up to a certain pH. Thus adsorption of every single species (M(2+) or MY(2-)) or of possible mixtures (M(2+)+MY(2-)) at natural pH or after NaOH titration could be calculated by the use of simple quadratic model equations, once the initial concentrations of the corresponding species, i.e., [M(2+)](0) or [MY(2-)](0), were known. The compatibility of theoretical and experimental data pairs of adsorbed species concentrations was verified by means of nonlinear regression analysis. The findings of this study can be further developed so as to serve environmental risk assessment concerning the expansion of a heavy metal contaminant plume with groundwater move ment in soil consisting of hydrated-oxide type minerals. Copyright 2000 Academic Press.  相似文献   

11.
This study investigated the feasibility of Fusarium solani biomass as a biosorbent for Cu(II) and Pb(II) removal from aqueous solutions. Batch sorption experiments were carried out for Cu(II) and Pb(II) to quantify the sorption kinetics, pH, biosorbent dose and pretreatment of F. solani biomass. Biomass metal uptake clearly competed with protons present in the aqueous medium, making pH an important variable in the process. The maximum biosorption by F. solani biomass was obtained with solutions having pH 5 for both metal ions. An enhanced Cu(II) removal (96.53%) was observed for aluminum hydroxide pretreated biomass. Maximum Pb(II) removal (95.48%) was observed with native biomass. Time dependence experiments for the metal ions uptake showed that adsorption equilibrium reached almost 240 min after metal addition. The kinetic studies showed that the biosorption process followed the pseudo second‐order rate model for Cu(II) and Pb(II). The equilibrium data fitted well to the Langmiur isotherm model.  相似文献   

12.
Sorption of metal ions from aqueous solution onto metal-ligand complexes of sporopollenin derivatives has been measured as a function of pH at several temperatures between 20 and 50°C. Novel metal-ligand exchange resins possessing oxime and carboxylic acid sidearm functionality were prepared through the reaction of diaminosporopollenin with dichloro-antiglyoxime and bromoacetic acid. The pH dependencies and sorption isotherms of various metal ions such as Zn(II), Cd(II), and Al(III) on the resin were investigated from aqueous solution. The sorption behavior of these metal-ligand complexes of sporopollenin derivatives and the possibilities of selectively removing and recovering heavy metals are explained on the basis of their chemical nature and complex properties and the results are interpreted in terms of the variations of pH.  相似文献   

13.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

14.
The adsorption of palladium(II), rhodium(III), and platinum(IV) from diluted hydrochloric acid solutions onto Fe(3)O(4) nanoparticles has been investigated. The parameters studied include the contact time and the concentrations of metals and other solutes such as H(+) and chloride. The equilibrium time was reached in less than 20 min for all metals. The maximum loading capacity of Fe(3)O(4) nanoparticles for Pd(II), Rh(III), and Pt(IV) was determined to be 0.103, 0.149, and 0.068 mmol g(-1), respectively. A sorption mechanism for Pd(II), Rh(III), and Pt(IV) has been proposed and their conditional adsorption equilibrium constants have been determined to be logK=1.72, 1.69, and 1.84, respectively. Different compositions of eluting solution were tested for the recovery of Pt(IV), Pd(II), and Rh(III) from Fe(3)O(4) nanoparticles. It was found that 0.5 mol L(-1) HNO(3) can elute all of the metal ions simultaneously, while 1 mol L(-1) NaHSO(3) was an effective eluting solution for Rh(III), and 0.5 mol L(-1) NaClO(4) for Pt(IV). In competitive adsorption, the nanoparticles showed stronger affinity for Rh(III) than for Pd(II) and Pt(IV).  相似文献   

15.
《Solid State Sciences》2012,14(2):202-210
Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd2+, Cu2+ and Pb2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm−1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.  相似文献   

16.
In the present study, we attempted to synthesize a novel sorbent from the starch modified montmorillonite for the removal of Pb(II), Cd(II), and Ni(II) ions from aqueous solutions. Structure and properties of the adsorbent were characterized by Fourier-transformed infrared(FT-IR) spectroscopy, X-ray diffraction (XRD), and Field emission scanning electron microscopic (FE-SEM) techniques. Batch experiments were confirmed through the effect of different conditions including pH, contact time, initial metal concentration and adsorbent dose. Specifically, the optimum value of adsorbent dose was achieved as 20 g/l for the removal of almost metal ions. The adsorption data was fitted with the optimum pH value as 5 for all experiments. The contact time at which the uptake of maximum metal adsorption was observed within 45 min for Pb(II), 90 min for Cd(II), and 60 min for Ni(II). In addition, it was revealed in our study that the equilibrium data obeyed the Langmuir model, and the adsorption kinetic followed a pseudo second-order rate model. Obtained results were noticeable for a modified phyllosilicate adsorbent, and with such a simple and low-cost modification for montmorillonite, the potential of this material as an economical and effective adsorbent for the removal of metal ions from aqueous solution was considerably elevated.  相似文献   

17.
Guanazine (3,4,5-triamino-1,2,4-triazole) is selectively nitrosated on C-NH2 to produce nitrosoguanazine (3-nitrosamino-4,5-diamino-1,2,4-triazole). The nitrosoguanazine is used to prepare 5-azido-3-amino-1,2,4-triazole and nitrosoguanazine anion-Cu(II) complexes.  相似文献   

18.
N-Unsubstituted azoles (1,2,4-triazole, 3-amino-1,2,4-triazole) and 5-R-tetrazoles (R = H, CH3, C2H5, C4H9, CH = CH2, C6H5, p-CH3C6H4, NH2) form water-soluble polymeric complexes in systems containing certain transition metal salts. The data obtained and the results of MP2/6-31G* * calculations of the electronic structures of 5-R-tetrazolate anions show that the ability of azoles for formation of polymeric complexes with transition metal ions is mostly determined by the acid-base properties of azoles. The geometric structure of a polymeric chain with the Co2+ ion having the coordination number 6 and the 5-methyltetrazolate anion being a bridging ligand was examined at the STO-3G level. It was shown that the coordination by the 2- and 3-nitrogen atoms of the tetrazole ring is most favored by energy.  相似文献   

19.
The biosorption of nickel(II) and copper(II) ions from aqueous solution by dried Streptomyces coelicolor A3(2) was studied as a function of concentration, pH and temperature. The optimum pH range for nickel and copper uptake was 8.0 and 5.0, respectively. At the optimal conditions, metal ion uptake was increased as the initial metal ion concentration increased up to 250 mg l(-1). At 250 mg l(-1) copper(II) ion uptake was 21.8% whereas nickel(II) ion uptake was found to be as high as 7.3% compared to those reported earlier in the literature. Metal ion uptake experiments were carried out at different temperatures where the best ion uptake was found to be at 25 degrees C. The characteristics of the adsorption process were investigated using Scatchard analysis at 25 degrees C. Scatchard analysis of the equilibrium binding data for metal ions on S. coelicolor A3(2) gave rise to a linear plot, indicating that the Langmuir model could be applied. However, for nickel(II) ion, divergence from the Scatchard plot was evident, consistent with the participation of secondary equilibrium effects in the adsorption process. Adsorption behaviour of nickel(II) and copper(II) ions on the S. coelicolor A3(2) can be expressed by both the Langmuir and Freundlich isotherms. The adsorption data with respect to both metals provide an excellent fit to the Freundlich isotherm. However, when the Langmuir isotherm model was applied to these data, a good fit was obtained for the copper adsorption only and not for nickel(II) ion.  相似文献   

20.
The modified sorbents with dithizone and zinc dithizonate adsorbed on the silica surface were obtained. The adsorption of heavy metal ions from aqueous solutions onto loaded silicas was studied. Color scales for Ag(I), Hg(II) and Pb(II) visual test detection were worked out. The modified silica gels were established to be applicable to semi-quantitative determination of these metal ions in buttermilk, natural, mineral and waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号