首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
A sensitive and selective electrochemical sensor for the determination of glutathione(GSH) was developed using a modified multiwall carbon nanotube paste electrode with 3,4 dihydroxy cinnamic acid as a mediator.This modified electrode showed very high electrocatalytic activity for the anodic oxidation of GSH.Under the optimized conditions,the electrocatalytic peak current showed a linear relationship with GSH concentration in the range of 0.5-400.0 μmol/L with a detection limit of 0.1 μmol/L GSH.The relative standard deviations for seven successive assays of 5.0 and 25.0 μmol/L GSH were 2.2% and 2.7%,respectively.The modified electrode was used for the determination of GSH compounds in real urine samples.  相似文献   

2.
A carbon paste electrode(CPE) chemically modified with multiwall carbon nanotubes and ferrocene(FC) was used as a selective electrochemical sensor for the simultaneous determination of trace amounts of cysteamine(CA) and folic acid(FA).This modified electrode showed very efficient electrocatalytic activity for the anodic oxidation of CA.The peak current of differential pulse voltammograms of CA and FA increased linearly with their concentration in the ranges of 0.7-200μmol/L CA and 5.0- 700μmol/L FA.The detection limits for CA and FA were 0.3μmol/L and 2.0μmoI/L,respectively.The diffusion coefficient(D) and transfer coefficient(α) of CA were also determined.These conditions are sufficient to allow determination of CA and FA both individually and simultaneously.  相似文献   

3.
A multiwall carbon nanotube modified electrode prepared by incorporating multiwall carbon nanotubes in the electrode of a sensor and naphthol green as a homogeneous mediator was used as a voltammetric sensor for the determination of N‐actylcysteine(N‐AC) in the presence of trypto-phan(Trp). The voltammograms of differential pulse voltammetry of N‐AC in a mixture with Trp were separated from each other by a potential difference of 200 mV, which allowed the determina-tion of both N‐AC and Trp simultaneously. Under the optimum conditions, the electrocatalytic cur-rents increased linearly with N‐AC concentration in the range of 0.25–400 μmol/L(two linear seg-ments with different slopes). The detection limit for N‐AC was 0.08 μmol/L. The kinetic parameters of the system were determined using electrochemical methods. The method was applied for the determination of N‐AC in drug and urine samples.  相似文献   

4.
A highly sensitive electrochemical sensor was prepared for the determination of L-cysteine using a modified multiwall carbon nanotubes paste electrode in the presence of 3,4-dihydroxycinnamic acid(3,4-DHCA) as a mediator, based on an electrocatalytic process. The results indicate that the electrode is electrocatalytically efficient for the oxidation of L-cysteine in the presence of 3,4-DHCA. The interaction between the mediator and L-cysteine can be used for its sensitive and selective determination. Using chronoamperometry, the catalytic reaction rate constant was calculated to be 2.37 × 102 mol–1 L s–1. The catalytic peak current was linearly dependent on the L-cysteine concentration in the range of 0.4–115 μmol/L. The detection limit obtained by linear sweep voltammetry was 0.25 μmol/L. Finally, the modified electrode was examined as a selective, simple, and precise new electrochemical sensor for the determination of L-cysteine in real samples.  相似文献   

5.
于浩  郑笑晨  刘冉彤  金君  简选 《应用化学》2014,31(11):1336-1344
采用循环伏安法制备了多壁碳纳米管负载铁氰化铜-铁修饰复合陶瓷碳电极(CuFeHCF/MWCNT/CCE),研究了该修饰电极的电化学性质及对NO-2的电催化活性。 结果表明,该修饰电极对NO-2的电氧化具有强的催化活性,安培法检测NO-2的线性范围为2.0×10-7~1.4×10-3 mol/L,灵敏度为104.1 μA/(mmol·L-1),检出限(3sb)为5.0×10-8 mol/L。 利用该方法测定了土壤中NO-2的含量,结果令人满意。  相似文献   

6.
In this study,Au nanoparticles/poly 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid film modified glassy carbon electrode(AuNPs/poly(NDI)/GCE) has shown excellent electrocatalytic activity toward the oxidation of adrenaline(ADR),paracetamol(PAC),and tryptophan(Trp).The bare glassy carbon electrode(GCE) fails to separate the oxidation peak potentials of these molecules,while the poly(NDI) film modified electrode can resolve them.Electrochemical impedance spectroscopy(EIS)indicates that the charge transfer resistance of the bare electrode decreases as 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid is electropolymerized on the bare electrode.Furthermore,EIS exhibits enhancement of electron transfer kinetics between analytes and the electrode after electrodeposition of Au nanoparticles.Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 0.01-680.0 μmol L~1 for ADR,0.05-498.0 μmol L~1 for PAC,and 3.0-632.0 μmol L~1 for Trp;with detection limits(S/N = 3) of 0.009 μmol L~1,0.005 μmol L~1,and 0.09 μmol L~1 for ADR,PAC,and Trp,respectively.The proposed method has been successfully applied for simultaneous determination of ADR,PAC,and Trp in biological samples.  相似文献   

7.
A chemically modified carbon paste electrode (CPE), consisting of 2,2''-[(1E)-(1,2-phenylenebis(azanylylidene)] bis(methanylylidene)]bis(benzene-1,4-diol) (PBD) and multiwalled carbon nanotubes (CNTs), was used to study the electrocatalytic oxidation of dopamine using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry (DPV). First, the electrochemical behavior of the modified electrode was investigated in buffer solution. Then the diffusion coefficient, electrocatalytic rate constant, and electron-transfer coefficient for dopamine oxidation at the surface of the PBD-modified CNT paste electrode were determined using electrochemical approaches. It was found that under optimum conditions (pH = 7.0), the oxidation of dopamine at the surface of such an electrode occurred at about 200 mV, lower than that of an unmodified CPE. DPV of dopamine at the modified electrode exhibited two linear dynamic ranges, with a detection limit of 1.0 μmol/L. Finally, DPV was used successfully for the simultaneous determination of dopamine, uric acid, and folic acid at the modified electrode, and detection limits of 1.0, 1.2, and 2.7 μmol/L were obtained for dopamine, uric acid, and folic acid, respectively. This method was also used for the determination of dopamine in a pharmaceutical preparation using the standard addition method.  相似文献   

8.
A simple,sensitive,and reliable method for the voltammetric determination of bisphenol A(BPA) by using carboxylic group functionalized single-walled carbon nanotubes(f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene)(PC4) complex modified glassy carbon electrode(GCE) has been successfully developed.The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques.The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS(0.1 mol/L,pH 7.0).The surface morphology of the 3D network of composite film is beneficial for the adsorption of analytes.Under the optimized conditions,the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L(R~2 = 0.9989),with a limit of detection of 0.032 μmol/L(S/N = 3).The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of/-SWCNT and the extraordinary conductivity of PC4.Furthermore,the proposed modified electrode displays high stability and good reproducibility.The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.  相似文献   

9.
A novel covalently modified glassy carbon electrode with β-cyclodextrin was prepared via electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA), hypoxanthine(HX) and dopamine(DA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of UA, XA, HX and DA by cyclic voltammetry(CV) method. The oxidation peaks of the four compounds were well defined and had the enhanced peak currents. The separation potentials of the oxidation peaks for DA-UA, UA-XA and XA-HX were 150, 390 and 360 mV in CV, respectively. By means of differential pulse voltammetry(DPV) method, the calibration curves in the ranges of 10-225, 5-105, 10-170 and 5-150 μmol/L were obtained for UA, XA, HX and DA, respectively. The lowest detection limits(S/N=3) were 5, 1.25, 5 and 1.5 μmol/L for UA, XA, HX and DA, respectively. The practical application of the modified electrode was demonstrated by the determination of DA in hydrochloride injection and UA, XA, HX in human urine samples.  相似文献   

10.
通过镀膜/循环伏安法制备了钴氢氧化物膜修饰的玻碳电极。该修饰电极对邻苯二酚(CA)和对苯二酚(HQ)具有较强的电催化活性。考察了支持电解质酸度对邻苯二酚和对苯二酚电化学响应的影响,选用0.1 mol/LPBS(pH 10.0)作为支持电解质。利用差示脉冲伏安法(DPV)对邻苯二酚和对苯二酚进行选择性检测,当两者浓度同时改变时,邻苯二酚和对苯二酚在6~100μmol/L范围内氧化峰电流与其浓度呈良好的线性关系,检出限分别为2×10–7,5×10–7mol/L(S/N=3)。钴氢氧化物膜电极具有较好的稳定性、重现性及较强的抗干扰能力,将此修饰电极应用于模拟水样中邻苯二酚和对苯二酚的测定,回收率为95.4%~100.4%。  相似文献   

11.
壳聚糖-铜复合物修饰电极对过氧化氢电催化性能的研究   总被引:1,自引:0,他引:1  
将壳聚糖与铜盐通过配位结合制得壳聚糖-铜复合物(CTS-Cu),并用其修饰玻碳电极,使用循环伏安法和计时安培法研究了该修饰电极对H2O2的电催化性能,对其催化机理进行了探讨.优化的实验条件为:以0.1 mol/L.磷酸缓冲溶液(PBS,pH 7.0)为反应介质,CTS-Cu修饰液中的铜离子浓度为6 mmol/L,工作电...  相似文献   

12.
The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.  相似文献   

13.
A nanocomposite of polyaniline/reduced graphene oxide (PANI-rGO) was synthesized using a hydrothermal method. The product was characterized by FT-IR, Raman spectra, XRD, SEM and TEM. Then the hybrid material of PANI-rGO and Nafion (PANI-rGO-NF) was prepared and used to modify glassy carbon electrode for the trace determination of dopamine (DA) employing differential pulse voltammetry (DPV). It was found that the hybrid material showed good catalytic activity toward the oxidation of DA, and no response to ascorbic acid (AA) and uric acid (UA) was observed, suggesting a high selectivity of the sensor toward DA. The peak currents were linearly correlated with the concentration of DA in the range from 0.05 μmol/L to 60.0 μmol/L (R=0.996) and 60.0 μmol/L to 180.0 μmol/L (R=0.996) with a detection limit of 0.024 μmol/L (S/N=3). The modified electrode also exhibited excellent repeatability and stability.  相似文献   

14.
采用直接电化学沉积法制备出纳米金修饰玻碳电极,研究了其对亚硝酸根的电催化氧化作用。结果表明,亚硝酸根在该修饰电极上于0.8 V处出现了一个良好的氧化峰。在最优实验条件下,亚硝酸根的峰电流与其浓度在2×10-6~2×10-3mol/L范围内呈一定的线性关系,检出限为6.0×10-7(S/N=3),提出了用循环伏安法测定亚硝酸根的方法。纳米金修饰电极用于东莞自来水水样中亚硝酸根的测定,回收率在98.1%~101.4%之间。对比本方法,用分光光度法对东莞自来水样中亚硝酸根进行了测定,结果满意。  相似文献   

15.
制备了一种碳纳米管-石墨烯纳米片复合膜修饰金电极的用于同时测定邻苯二酚和对苯二酚电化学传感器。 并应用循环伏安法研究了邻苯二酚和对苯二酚在该电极上的电化学行为,邻苯二酚和对苯二酚的浓度检测采用差分脉冲伏安法,结果表明,碳纳米管-石墨烯纳米片复合膜极大的增强了邻苯二酚和对苯二酚的电催化活性。 并在0.5~6.0×10-4 mol/L浓度范围内与响应电流有良好的线性关系。邻苯二酚和对苯二酚的最低检测限分别是5.0×10-9和4.8×10-9 mol/L。 该电化学传感器能用于实际样品中的酚类化合物的检测。  相似文献   

16.
The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0-8-7.0×106 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples.  相似文献   

17.
A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix.The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods.The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values.Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV.The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques.A calibration curve in the range of 0.03 to 2400μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3σ) under the optimized conditions.The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.  相似文献   

18.
A carbon paste electrode that was chemically modified with multiwall carbon nanotubes and p-aminophenol was used as a selective electrochemical sensor for the simultaneous detection of hydroxylamine (HX) and phenol. Cyclic voltammetry, double potential-step chronoamperometry, square wave voltammetry (SWV), and electrochemical impedance spectroscopy were used to investigate the use of p-aminophenol in the carbon nanotubes paste matrixes as a mediator for the electrocatalytic oxidation of HX and phenol in aqueous solution. The coefficient of electron transfer and catalytic reaction rate constant were determined using the electrochemical methods. Under optimized conditions, the electrocatalytic oxidation current peaks for HX and phenol increased linearly with concentration in the range of 0.5-180.0 and 10.0-650.0 μmol/L for HX and phenol, respectively. The detection limits for HX and phenol were 0.15 and 7.1 μmol/L, respectively. The anodic potential peaks of HX and phenol were separated by 0.65 V in SWV. Because of good selectivity and sensitivity, the present method provides a simple method for the selective detection of HX and phenol in practical samples such as water samples.  相似文献   

19.
<正>In this work,we describe a new strategy for the electrochemical determination of captopril(CA) using ferrocenemonocarboxylic acid as a mediator and multiwall carbon nanotubes as sensors in aqueous solution at pH 7.0.The diffusion coefficient(D),and the kinetic parameters such as electron transfer coefficient(α).and heterogeneous rate constant(k_h),for CA were also determined using electrochemical approaches.Under the optimized conditions,the electrocatalytic oxidation peak current of captopril showed two linear dynamic ranges with a detection limit of 0.3×10~(-6) mol L~(-1) captopril.The linear calibration range was 0.8×10~(-6) to 65×10~(-6) mol L~(-1) using cyclic voltammetry.Finally,this modified electrode was also examined as a selective,simple and precise new electrochemical sensor for the determination of captopril in real samples such as drug and patient human urine.  相似文献   

20.
利用氧化还原反应制备纳米银-石墨烯复合纳米材料(Ag NPs-GN),将其修饰在玻碳电极表面制备了纳米银-石墨烯修饰玻碳电极(Ag NPs-GN/GCE)。在p H 4.78的Britton-Robinson(B-R)缓冲溶液中,用循环伏安法(CV)和方波伏安法(SWV)研究了对乙酰氨基酚在Ag NPs-GN/GCE和GN/GCE上的电化学行为。结果表明,二者对对乙酰氨基酚的氧化还原反应均有电催化作用,而且复合纳米材料Ag NPs-GN具有较单一GN更好的催化效果。用方波伏安法测得对乙酰氨基酚的还原峰电流与其浓度在1.0×10-7~5.0×10-4mol/L范围内呈线性关系,检出限(S/N=3)为3.0×10-8mol/L。建立了片剂中对乙酰氨基酚含量测定的新方法,修饰电极具有较好的重现性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号