首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We present the results of an experimental study on ionic wind generation by a needle-to-cylinder dc corona discharge. A strong electrical field in the air generates air flow driven by the motion of ionized gas molecules along electric field lines. We measured the ionic wind velocity and discharge current with respect to various electrode geometries, distances between electrodes, and applied voltages. Our measurements suggest an empirical model for the ionic wind velocity as a function of the geometric factors of the collector electrode and the applied electric potential, which is useful for designing ionic wind cooling systems for small electronics.  相似文献   

2.
The assisted corona discharge is a unique discharge configuration that utilizes multiple collecting electrodes to minimize the voltage required to initiate a corona discharge and to generate an ionic wind. In this work, the geometric parameters that govern the formation of the assisted corona discharge and subsequent ionic wind are evaluated. Flow velocity measurements suggest that the geometry of the electrode spacings is optimized for ionic wind generation when the current flowing to the collector electrode is maximized, and that as the electrode gap is decreased to microscale dimensions, ionic wind production is inhibited.  相似文献   

3.
Non-intrusive two-phase fluid pumping based on an electrohydrodynamically (EHD) induced flow phenomenon with free liquid surface exposed to gas-phase corona discharges is experimentally investigated. Dielectric liquid flow generated near a corona discharge electrode progresses toward an inclined plate electrode, and then climbs up the surface against the gravitational force for an air-wave (AW) type EHD pump. The AW type EHD pump is operated on ionic wind field along the inclined plate electrode. The pumping performance of time-averaged liquid flow rate and the liquid-phase flow motion are characterized. The liquid flow characteristics related to a dimensionless parameter of corona discharge fields are presented.  相似文献   

4.
5.
An electrohydrodynamic investigation has been carried out in a pin-to-plate gas discharge system to clarify the mechanism of repulsive force generation between a pin and plate electrode at corona discharge. Numerical calculations have been conducted in two steps. First, the axi-cylindrical static corona discharge field was calculated with the finite-element method to deduce the Coulombic body force ρ E applied to the air, where ρ is the charge density and E is the electric field, and then the induced ionic wind was calculated with the finite differential method. The calculated pressure distribution on the plate electrode was on the order of 10 Pa which was in good agreement with the measured pressure distribution. The calculated air velocity at the center was several m/s and was confirmed by a time-of-flight experiment and the velocity distribution near the pin electrode also agreed with measurements using a laser Doppler velocimeter. Pressure and wind velocity were increased at high-applied voltage. These results confirm that the ionic wind is the cause of the repulsive force to the pin electrode at the corona discharge.  相似文献   

6.
During a dc corona discharge, the ions' momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind.The characteristics of corona discharge and the induced ionic wind are investigated experimentally and numerically under different polarities using a needle-to-ring electrode configuration.The morphology and mechanism of corona discharge, as well as the characteristics and mechanism of the ionic wind, are different when the needle serves as cathode or anode.Under the different polarities of the applied voltage, the ionic wind velocity has a linear relation with the overvoltage.The ionic wind is stronger but has a smaller active region for positive corona compared to that for negative corona under a similar condition.The involved physics are analyzed by theoretical deduction as well as simulation using a fluid model.The ionic wind of negative corona is mainly affected by negative ions.The discharge channel has a dispersed feature due to the dispersed field, and therefore the ionic wind has a larger active area.The ionic wind of positive corona is mainly affected by positive ions.The discharge develops in streamer mode, leading to a stronger ionic wind but a lower active area.  相似文献   

7.
李小华  包伟伟  王静  蔡忆昔  李慧霞 《发光学报》2015,36(10):1195-1200
针对大功率LED芯片的散热问题,提出了一种基于电晕放电原理的离子风散热方案。通过试验,研究了电晕放电的电学性能,同时探寻了放电电压对制冷效果的影响以及温降随电晕放电功率的变化规律。结果表明,放电间距相同时,对发生器施加负电晕能够在较低的电压下产生离子风,降温效果显著。电晕电流平方根与放电电压呈线性关系。电晕放电功率为1.5 W、放电间距为10 mm时,散热效果最好。  相似文献   

8.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

9.
王维  杨兰均  刘帅  黄易之  黄东  吴锴 《物理学报》2015,64(10):105204-105204
空气电晕放电离子风激励器无需旋转部件, 仅通过消耗电能就能直接产生驱动力, 它是一种新型的动力技术, 备受国内外航空航天界的广泛关注. 目前对空气电晕放电离子风激励器的推力产生机理虽有各种解释, 但是现有理论均不能统一各种条件下的实验结果, 仍需要开展进一步的分析与研究. 本文以线-铝箔电极电晕放电激励器为研究对象, 通过实验研究发现作用在线电极与铝箔电极上的静电力不对称, 而且改变铝箔电极纵向高度和气压均能影响激励器的推力大小; 通过理论分析, 考虑电晕层与空间电荷的影响, 建立了线-铝箔电极电晕放电激励器的推力计算模型, 其计算值与实测值比较一致. 基于上述实验现象与理论建模分析, 本文认为线-铝箔电极电晕放电激励器的推力主要来源于线电极电晕产生的空间电荷对电极系统产生了不对称静电力作用, 使激励器出现净静电力作用.  相似文献   

10.
The DC corona discharge in air and the induced ionic wind were investigated in the needle-to-water system at atmospheric pressure. The water deformation was measured under various conditions, and wind pressure and active areas were estimated accordingly. The effects of applied voltage, gap spacing and tip radius on the corona ionic wind were studied and the qualitative analysis was provided. Self-rotation of corona discharge was observed in experiments. The results show that higher voltage or electric field strength results in a stronger ionic wind. The active area increases with applied voltage below a voltage threshold. There is an optimal gap distance for a wider as well as stronger ionic wind and blunter needle we used leads to an enhancement on both the active area and the wind strength. The wind velocity reaches 7 m/s at optimized condition in the present system. The rotation of corona discharge helps to improve the active area and uniformity of the treating area which may be associated with the chemical reaction of the water surface.  相似文献   

11.
Results of spectroscopic investigations and current-voltage characteristics of corona discharge and back discharge on fly-ash layer, generated in point-plane electrode geometry in air at atmospheric pressure are presented in the paper. The characteristics of both discharges are similar but differ in the current and voltage ranges of all the discharge forms distinguished during the experiments. Three forms of back discharge, for positive and negative polarity, were investigated: glow, streamer and low-current back-arc. In order to characterize ionisation and excitation processes in back discharge, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash layer removed. The emission spectra were measured in two discharge zones: near the tip of needle electrode and near the plate. Visual forms of the discharge were recorded with digital camera and referred to current-voltage characteristics and emission spectra. The measurements have shown that spectral lines emitted by back discharge depend on the form of discharge and the discharge current. From the comparison of the spectral lines of back and normal discharges an effect of fly ash layer on the discharge morphology can be determined. The recorded emission spectra formed by ionised gas and plasma near the needle electrode and fly ash layer are different. It should be noted that in back arc emission, spectral lines of fly ash layer components can be distinguished. On the other hand, in needle zone, the emission of high intensity N2 second positive system and NO γ lines can be noticed. Regardless of these gaseous lines, also atomic lines of dust layer were present in the spectrum. The differences in spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. The aim of these studies is to better understand the discharge processes encountered in electrostatic precipitators.  相似文献   

12.
《Journal of Electrostatics》2007,65(10-11):655-659
This paper describes a DC surface corona discharge designed to modify the airflow around a flat plate. The electrode configuration consisted of two thin copper layers placed on each side of the plate's attack edge. Discharge optical measurements with a photomultiplier tube indicated that the light emitted by the plasma is pulsating at a frequency that increases with applied voltage. Moreover, with voltage higher than a threshold value, the electric discharge changes regime with brighter pulses. This discharge also induced an “ionic wind” whose velocity was measured with a pressure sensing probe (up to 1 m/s). Experiments with the particle image velocimetry system in a subsonic wind tunnel showed that this discharge can reduce the separated airflow on the flat plate for a flow of 14 m/s (Reynolds number of 187,000).  相似文献   

13.
In a multi-pin-to-multi-cupped-plane DC negative corona discharge configuration, a stable and diffuse glow discharge controlled by a fast airflow was obtained. This paper investigates the effect of the air gas flow velocity and the electrode structure on the discharge mode transition and the stabilization of the glow discharge by means of electric measurements and emission records. The stabilization mechanism of the glow discharge is discussed. The maximum glow discharge current reached 3.9 mA and the average current density was about 0.7 mA/cm2.  相似文献   

14.
We report on the results of experimental investigations of the kinematic structure of ionic wind from a wire electrode placed near a heated plate, which plays the role of the earthed electrode. Experiments are carried out in a wide range of voltages for different polarities of the wire for several values of the electrode gap. We compare the structures of the flows emerging as a result of natural convection in open air for different positions of the plate and in the presence of a fast ionic wind jet that considerably intensifies heat transfer in the boundary layer at the heated planar electrode. Local temperature distributions over the plate surface are obtained, as well as the integral dependences of the effective heat removal on the electric parameters of the corona discharge. The velocity of air flows with ionic wind reaches 4 m/s, and the heat power removed from the plate for fixed overheating increases ninefold compared to the situation with natural convection.  相似文献   

15.
Absolute measurement for He-α resonance (1s2 1S0?1s2p1 P 1, at 40.2 Å) line emission from a laser-produced carbon plasma has been studied as a function of laser intensity. The optimum laser intensity is found to be ≈1.3×1012 W/cm2 for the maximum emission of 3.2 × 1013 photons sr?1 pulse?1. Since this line lies in the water window spectral region, it has potential application in x-ray microscopic imaging of biological sample in wet condition. Theoretical calculation using corona model for the emission of this line is also carried out with appropriate ionization and radiative recombination rate coefficients  相似文献   

16.
空气电晕放电中的OH自由基发射光谱   总被引:2,自引:2,他引:0  
测量了大气压下向空气中喷射不饱和水蒸气的电晕放电产生的OH自由基的发射光谱。通过对光谱线强度变化的分析,研究了电场强度、放电方式、水蒸气比例等因素对OH自由基产生过程的影响,及OH自由基浓度在放电反应空间的分布特点。  相似文献   

17.
A study is made of the effects related to the formation of electrode jets in discharges in hydrogen and air at a current of 105–106 A, a current growth rate of 1010 A/s, an initial pressure of 0.1–4.0 MPa, and a discharge gap length of 5–40 mm. After secondary breakdown, jets are observed in a semitransparent discharge channel expanding with a velocity of (4–7)×102 m/s. The formation of shock waves in the interaction of the jets with the ambient gas and the opposite electrode is observed by the shadowgraphy method. Seventy microseconds after the beginning of the discharge, the pressure of the metal vapor plasma near the end of the tungsten cathode amounts to 177 MPa. The brightness temperature in this case is T=59×103 K, the average ion charge number is [`(m)] = 3.1\overline m = 3.1 , and the metal vapor density is n=5.3×1019 cm−3. After 90 μs, the average ion charge number and the metal vapor density near the anode end are [`(m)] = 2.6\overline m = 2.6 and n=7.4×1019 cm−3, respectively. Based on the experimental data, possible reasons for the abnormally high values of the total voltage drop near the electrodes (up to ∼1 kV) are discussed.  相似文献   

18.
The present study aims at showing the ability of ac discharges to be used as fanless blower in a rectangular channel. First, a 10 mm-high channel is used with four different types of ac atmospheric air discharges: an ac wire-to-plate corona discharge, two different ac wire-to-plate dielectric barrier discharges (DBD) and a surface DBD. The electrical and mechanical characteristics of the four different discharges are investigated and compared. They highlight that the best geometrical configuration is the wire-to-plate DBD with a thick dielectric, that allowed us to induce ionic wind velocity up to 3.3 m/s and flow rate per unit spanwise length of 24 L per second per meter. Secondly, this optimized configuration is reduced in size (2 mm-high channel) and the effect of this downscaling on the plasma actuator performances is studied, showing that the efficiency decreases with the channel height.  相似文献   

19.
Corona discharges in flowing gas are of technological significance for a wide range of applications, ranging from plasma reactors to lightning protection systems. Numerous experimental studies of corona discharges in wind have confirmed the strong influence of wind on the corona current. Many of these studies report global electrical characteristics of the gaseous discharge but do not present details of the spatial structure of the potential field and charge distribution. Numerical simulation can help clarify the role of wind on the ion redistribution and the electric field shielding. In this work, we propose a methodology to solve numerically for the drift region of a DC glow corona using the usual approach of collapsing the ionization region to the electrode surface, but allowing for strong inhomogeneities in the electrical and flow setup. Numerical results for a grounded wire in the presence of an ambient electric field and wind are presented. The model predicts that the effect of the wind is to reduce the extension of the corona over the wire and to shift the center of the ion distribution upstream of the flow. In addition, we find that, even though the near-surface ion distribution is strongly affected by the ion injection law used, the current characteristics and the far field solution remain pretty much unaffected.  相似文献   

20.
The characteristics of the electric wind attendant on the corona initiation are studied with the aim of reaching a maximal velocity and flow rate. Systems with a single corona point and multi-in-line electrode are used. The dependences of the gas flow rate on the current, voltage, voltage polarity, electrode spacing, corona point geometry, and corona-free electrode design are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号