首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevention of nanoparticle coalescence under high-temperature annealing   总被引:2,自引:0,他引:2  
An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.  相似文献   

2.
Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange‐coupled nanocomposites of hard magnetic face‐centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct‐FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct‐FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct‐FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.  相似文献   

3.
This paper describes a performance of precise control of shell thickness in silica-coating of Au nanoparticles based on a sol-gel process, and an investigation into X-ray imaging properties for the silica-coated Au (Au/SiO(2)) particles. The Au nanoparticles with a size of 16.9±1.2 nm prepared through a conventional citrate reduction method were used as core particles. The Au nanoparticles were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source, sodium hydroxide (NaOH) as a catalyst, and (3-aminopropyl) trimethoxysilane (APMS) as a silane coupling agent. An increase in TEOS concentration resulted in an increase in shell thickness. Under certain concentrations of Au, H(2)O, NaOH, and APMS, the Au/SiO(2) particles with silica shell thickness of 6.0-61.0 nm were produced with varying TEOS concentration. Absorption peak wavelength of surface plasmon resonance of the Au/SiO(2) colloid solution depended on silica shell thickness, which agreed approximately with the predictions by Mie theory. The as-prepared colloid solution could be concentrated up to an Au concentration of 0.19 M with salting-out and centrifugation. The concentrated colloid solution showed an X-ray image with high contrast, and a computed tomography value for the colloid solution with an Au concentration of 0.129 M was achieved 1329.7±52.7 HU.  相似文献   

4.
Hexagonal platy composite particles with a hydrotalcite core and a nanoporous silica shell with a thickness of ca. 100 nm were synthesized by the reaction of a Mg-Al hydrotalcite with a homogeneous aqueous solution containing tetraethoxysilane, hexadecyltrimethylammonium chloride, ammonia and methanol at 3 degrees C. The calcination of the products at 500 degrees C in air led to the composite particle with a Mg/Al mixed oxide core and a nanoporous silica shell. Hexagonal platy particles of nanoporous silica with a pore diameter of 2.3 nm and BET surface area of 700 m(2) (g of silica)(-1) were obtained by removing the Mg/Al mixed oxide core.  相似文献   

5.
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.  相似文献   

6.
Three-layer composite magnetic nanoparticle probes for DNA   总被引:3,自引:0,他引:3  
A method for synthesizing composite nanoparticles with a gold shell, an Fe3O4 inner shell, and a silica core has been developed. The approach utilizes positively charged amino-modified SiO2 particles as templates for the assembly of negatively charged 15 nm superparamagnetic water-soluble Fe3O4 nanoparticles. The SiO2-Fe3O4 particles electrostatically attract 1-3 nm Au nanoparticle seeds that act in a subsequent step as nucleation sites for the formation of a continuous gold shell around the SiO2-Fe3O4 particles upon HAuCl4 reduction. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, but the magnetic properties of the Fe3O4 inner shell.  相似文献   

7.
Silica encapsulation and magnetic properties of FePt nanoparticles   总被引:3,自引:0,他引:3  
Core-shell nanoparticles have emerged as an important class of functional nanostructures with potential applications in many diverse fields, especially in health sciences. We have used a modified aqueous sol-gel route for the synthesis of size-selective FePt@SiO2 core-shell nanoparticles. In this approach, oleic acid and olyel amine stabilized FePt nanoparticles are first encapsulated through an aminopropoxysilane (APS) monolayer and then subsequent condensation of triethoxysilane (TEOS) on FePt particle surface. These well-defined FePt@SiO2 core-shell nanoparticles with narrow size distribution become colloidal in aqueous media, and can thus be used as carrier fluid for biomolecular complexes. In comparison, the scarce hydrophilic nature of oleic acid monolayers on FePt particle surface yields an edgy partial coating of silica when only TEOS is applied for the surface modification. The synthesized core-shell nanoparticles were characterized by direct techniques of high resolution transmission electron microscopy (HRTEM), EDS and indirectly via UV-vis absorption and FTIR studies. The FePt@SiO2 nanoparticles exhibit essential characteristics of superparamagnetic behavior, as investigated by SQUID magnetometry. The blocking temperatures (T(B)) of FePt and FePt@SiO2 (135 and 80 K) were studied using zero field cooled (ZFC)/field cooled (FC) curves.  相似文献   

8.
Thermal stability of facetted Pt nanocrystals on amorphous silica support films was investigated using in situ transmission electron microscopy in a temperature range between 25 and 800 degrees C. The particles started to change their shapes at approximately 350 degrees C. Above 500 degrees C, the particles spread on the support film with increasing temperature, rather than becoming more spherical. Such temperature-induced wetting of Pt nanoparticles on silica surface can be attributed to the interfacial mixing of Pt and SiO(2) and the resulting negative interface energy.  相似文献   

9.
We present the results of the RAPET (reaction under autogenic pressure at elevated temperatures) dissociation of CoZr(2)(acac)(2)(O(i)Pr)(8) at 700 degrees C in a closed Swagelok cell under an applied magnetic field of 10 T. It produces a mixture of carbon-coated and noncoated metastable ZrO(2) nanoparticles, bare metallic Co nanoparticles, and bare carbon. The same reaction in the absence of a magnetic field produces spherical Co and ZrO(2) particles in sizes ranging from 11 to 16 nm and exhibiting, at room temperature, metastable phases: fcc for cobalt and a tetragonal phase for zirconia. The metastable phases of Co and ZrO(2) are manifested because of a carbon shell of approximately 4 nm thickness anchored to their surfaces. The effect of an applied magnetic field to synthesize morphologically different, but structurally the same, products is the key topic of the present paper.  相似文献   

10.
The electronic and optical natures of silica-coated semiconductor nanocrystals (Cd(2)Te(2)@(SiO(2))(24)) have been investigated by density functional theory (DFT) and time-dependent DFT calculations. The calculated results of Cd(2)Te(2)@(SiO(2))(24) have revealed that the structural synergy effect between the Cd(2)Te(2) quantum dots (QDs) and the silica coating shell plays a dominant role in the photoelectric properties. The binding of embedded Cd(2)Te(2) to the outer silica coating shell leads to the distortion of the silica nanocage, indicating strong coupling between the QDs and silica shell. The optical features of Cd(2)Te(2) clusters and Cd(2)Te(2)@(SiO(2))(24) complexes were evaluated using the time-dependent DFT method. It is determined that the maximal absorption peak of isolated Cd(2)Te(2) in a UV-Vis absorption spectrum appears at 584 nm, which shifts to 534 nm when the Cd(2)Te(2) QDs were encapsulated by silica, in close agreement with the experimental evidence. The excited process has a direct electronic transition character from the occupied Cd(2)Te(2) states to the outer silica nanocage excited states (core → shell electronic transitions). A deep insight into silica-coated QD systems is beneficial for understanding their optical nature and the development of core/shell QDs.  相似文献   

11.
We report here a new synthetic route to FePt nanoparticles using a stoichiometric mixture of Na2Fe(CO)4 and Pt(acac)2. The structure of FePt nanoparticles, their size, chemical composition, and magnetic property can be controlled by various synthetic parameters, such as the solvent type, nature, and molar ratio of surfactants and stabilizers, synthesis temperature, and purification process. Partially ordered fct (L10) nanoparticles with room temperature magnetic coercivity can be synthesized directly in tetracosane solution at 389 degrees C. The fcc FePt synthesized in nonadecane can be transformed into the magnetically important fct phase at 430 degrees C without significant particle sintering.  相似文献   

12.
Direct synthesis of fct-structured FePt nanoparticles was successfully achieved by using poly(N-vinyl-2-pyrrolidone) as a protective reagent at lower temperature than the case using low molecular weight ligands as a protective reagent. Experimental data suggest that a transformation of FePt nanoparticles from face-centered cubic to face-centered tetragonal (fct) structure takes place at reaction temperature of 261 degrees C. The results of XRD and the magnetic properties exhibit that the FePt nanoparticles synthesized at 261 degrees C have partially ordered fct-structure and a ferromagnetic behavior at room temperature.  相似文献   

13.
Silica-metal core–shell particles, as for instance those having siliceous core and nanostructured gold shell, attracted a lot of attention because of their unique properties resulting from combination of mechanical and thermal stability of silica and magnetic, electric, optical and catalytic properties of metal nanocrystals such as gold, silver, platinum and palladium. Often, the shell of the core–shell particles consists of a large number of metal nanoparticles deposited on the surface of relatively large silica particles, which is the case considered in this work. Namely, silica particles having size of about 600 nm were subjected to surface modification with 3-aminopropyltrimethoxysilane. This modification altered the surface properties of silica particles, which was demonstrated by low pressure nitrogen adsorption at ?196 °C. Next, gold nanoparticles were deposited on the surface of aminopropyl-modified silica particles using two strategies: (i) direct deposition of gold nanoparticles having size of about 10 nm, and (ii) formation of gold nanoparticles by adsorption of tetrachloroauric acid on aminopropyl groups followed by its reduction with formaldehyde.The overall morphology of silica–gold particles and the distribution of gold nanoparticles on the surface of modified silica colloids were characterized by scanning electron microscopy. It was shown that direct deposition of colloidal gold on the surface of large silica particles gives more regular distribution of gold nanopartciles than that obtained by reduction of tetrachloroauric acid. In the latter case the gold layer consists of larger nanoparticles (size of about 50 nm) and is less regular. Note that both deposition strategies afforded silica–gold particles having siliceous cores covered with shells consisting of gold nanoparticles of tunable concentration.  相似文献   

14.
In this study, multifunctional nanoparticles containing thermosensitive polymers grafted onto the surfaces of 6-nm monodisperse Fe(3)O(4) magnetic nanoparticles coated by silica were synthesized using reverse microemulsions and free radical polymerization. The magnetic properties of SiO(2)/Fe(3)O(4) nanoparticles show superparamagnetic behavior. Thermosensitive PNIPAM (poly(N-isopropylacrylamide)) was then grafted onto the surfaces of SiO(2)/Fe(3)O(4) nanoparticles, generating thermosensitive and magnetic properties of nanocomposites. The sizes of fabricated nanoparticles with core-shell structure are controlled at about 30 nm and each nanoparticle contains only one monodisperse Fe(3)O(4) core. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles measured using DSC was at around 34-36 degrees C. The magnetic characteristics of these multifunctional nanoparticles were also superparamagnetic.  相似文献   

15.
We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Sto?ber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.  相似文献   

16.
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.  相似文献   

17.
In this study, fibrous core–shell silica particles were successfully synthesized via a one-step oil–water biphase stratification coating strategy. The core–shell silica particles were composed of 3-µm non-pore silica cores and thin shells (50–100 nm), which have radial-like direct channels and a large pore size (19.89 nm). The fibrous core–shell silica particles were further modified by n-octadecyltrichlorosilane and used as stationary-phase media in high-performance liquid chromatography (HPLC). The chromatographic properties of the particles were systematically studied in small-molecule and protein separation processes. The results showed that the back pressure was as low as 8.5 MPa under the 1.0-mL min?1 flow velocity. Furthermore, fibrous core–shell silica particles with an 80-nm shell were used for separating seven small molecules within 10 min and six proteins within 6 min. This work demonstrates that the fibrous core–shell silica particles could be used as an HPLC stationary phase with good performance and low back pressure, and that they have great potential for application to HPLC separation in the future.  相似文献   

18.
The sol-emulsion-gel method is used for the preparation of about 5-7 nm size Eu2O3 doped and coated Y2SiO5 nanoparticles at 1300 degrees C. Here, we report the role of surface coating, dopant concentration and temperature of heating on the modification of crystal structure and the photoluminescence properties of Y2SiO5:Eu3+ nanocrystals. It is found that photoluminescence properties are sensitive to the crystal structure which is again controlled by surface coating, concentration and heating temperature. The decay times are 0.76, 1.14, 1.23 and 1.40 ms for 0.25, 0.5, 1.0 and 2.5 mol% Eu2O3 doped Y2SiO5 nanocrystals prepared at 1100 degrees C (X1-Y2SiO5). However, in X2-Y2SiO5 crystal phase (at 1300 degrees C) the average decay times are 1.05, 1.35, 1.55 and 1.60 ms for 0.25, 0.5, 1.0 and 2.5 mol% Eu2O3 doped Y2SiO5 nanocrystals, indicating the photoluminescence properties depend on both the crystal structure and the concentration of ions. The emission intensity of the peak at 612 nm (5D0-->7F2) of the Eu3+-ions is found to be sensitive to the doping and surface coating of Y2SiO5 nanocrystals. The decay times are 1.55 and 1.70 ms for 1300 degrees C heated 1.0 mol% Eu2O3 doped and coated Y2SiO5 nanocrystals, respectively. Our analysis suggests that the site symmetry of ions plays a most important role in the modification of radiative relaxation mechanisms and as a result on the overall photoluminescence properties.  相似文献   

19.
The coating of TiO(2) particles (P25) by a nanoporous silica layer was conducted to impart molecular recognitive photocatalytic ability. TiO(2)/nanoporous silica core/shell particles with varied pore diameters of the shell were synthesized by the reaction of P25 with an aqueous mixture of tetraethoxysilane and alkyltrimethylammonium chloride with varied alkyl chain lengths, followed by calcination. The TEM and nitrogen adsorption/desorption isotherms of the products showed that a nanoporous silica shell with a thickness of ca. 2nm and controlled pore diameter (1.2, 1.6, and 2.7 nm) was deposited on the titania particle when surfactants with different alkyl chain lengths (C12, C16 and C22) were used. The water vapor adsorption/desorption isotherms of the core/shell particles revealed that a larger amount of water adsorbed on the core/shell particles when the pore diameter is larger. The (29)Si MAS NMR spectra of the core/shell particles showed that the amount of surface silanol groups was independent of the water vapor adsorption capacity of the products. The possible molecular recognitive photocatalysis on the products was investigated under UV irradiation using two kinds of aqueous mixtures containing different organic compounds with varied sizes and functional groups: a 4-butylphenol, 4-hexylphenol, and 4-nonylphenol mixture and a 2-nitrophenol, 2-nitro-4-phenylphenol, and 4-nitro-2,6-diphenylphenol mixture. It was found that the core/shell particles exhibited selective adsorption-driven molecular recognitive photocatalytic decomposition of 4-nonylphenol and 2-nitrophenol in the two mixtures.  相似文献   

20.
We present the preparation and the characterization of the solution behavior and functional properties of superparamagnetic and/or fluorescent, thermo-responsive inorganic/organic hybrid particles with an intermediate protective silica shell and a smart polymer corona. These well-defined multifunctional nanogels were prepared via two consecutive encapsulation processes of superparamagnetic Fe(2)O(3) nanoparticles (NPs) and/or fluorescent CdSe(ZnS) semiconductor nanocrystals with a silica layer and a crosslinked poly(N-isopropylacrylamide) (PNIPAAm) polymer shell. First, the different NPs were entrapped into a silica shell using a microemulsion process. Therein, the precise adjustment of the conditions allows to entrap either several particles or single ones and to tailor the thickness of the silica shell in the range of 20-60 nm. In a second step, a polymer coating, i.e. thermosensitive PNIPAAm, was attached onto the surface of the multifunctional core-shell particles via free radical precipitation polymerization, furnishing multifunctional core-shell-corona hybrid nanogels. Analyses of the functional properties, i.e. optical brightness and magnetic moments, along with transmission electron microscopy reveal near monodisperse hybrid nanoparticles that retain the intrinsic properties of the original nanocrystals. Additionally, we demonstrate the drastically increased chemical stability due to the barrier properties of the intermediate silica layer that protects and shields the inner functional nanocrystals and the responsive character of the smart PNIPAAm shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号