首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Thiyl radicals are important intermediates in biological oxidative stress and enzymatic reactions, for example, the ribonucleotide reductases. On the basis of the homolytic bond dissociation energies (BDEs) only, the (alpha)C-H bonds of peptides and proteins would present suitable targets for hydrogen abstraction by thiyl radicals. However, additional parameters such as polar and conformational effects may control such hydrogen-transfer processes. To evaluate the potential of thiyl radicals for hydrogen abstraction from (alpha)C-H bonds, we provide the first absolute rate constants for these reactions with model peptides. Thiyl radicals react with (alpha)C-H bonds with rate constants between 1.7 x 10(3) M(-1) s(-1) (N-acetylproline amide) and 4 x 10(5) M(-1) s(-1) (sarcosine anhydride). However, the correlation of rate constants with BDEs is poor. Rather, these reactions may be controlled by conformation and dynamic flexibility around the (alpha)C-H bonds.  相似文献   

2.
Using time-resolved Fourier transform electron paramagnetic resonance, FT EPR, and optical spectroscopy, the photooxidation of glycine, alpha-alanine, alpha-aminoisobutyric acid, and model compounds beta-alanine, methylamine and sodium acetate, by excited triplets of anthraquinone-2,6-disulfonate dianion was studied in aqueous solutions in the pH range 5-13. Anthraquinone radical trianions showing strong emissive spin-polarization (CIDEP) were formed, indicating fast electron transfer from the quenchers to the spin-polarized quinone triplet as the primary reaction. None of the primary radicals formed upon one-electron oxidation of quenchers could be detected at the nanosecond time scale of FT EPR measurements because of their very fast transformation into secondary products. The latter were identified to be decarboxylated alpha-aminoalkyl radicals for alpha-amino acids anions and zwitterions, beta-aminoalkyl radicals for beta-alanine zwitterions, and methyl radicals for acetate anions; corresponding aminyl radicals were the first EPR detectable products from beta-alanine anions and methylamine. Thus, anthraquinone-2,6-disulfonate triplet can take an electron from both NH(2)- and -CO(2)(-) functional groups forming aminium ((+*)NH(2)-) and acyloxyl (-CO(2)(*)) radicals, respectively. Aminium radicals derived from beta-alanine anions and CH(3)-NH(2) stabilize by deprotonation into aminyl radicals, whereas these derived from alpha-amino acids anions are known to suffer ultrafast decarboxylation (tau approximately 10 ps). Analysis of the polarization patterns revealed that decarboxylation from acyloxyl radicals are considerably slower (ns < tau < 0.1 micros). Therefore, in the case of alpha-amino acids, the isoelectronic structures NH(2)-CR(2)-CO(2)(*) and (+*)NH(2)-CR(2)-CO(2)(-) probably do not constitute resonance mesomeric forms of one and the same species and the decarboxylation of aminium radicals is not preceded by the intramolecular carboxylate to amino group electron transfer. Absolute triplet quenching rate constants at zero ionic strength were in the range of 2 x 10(8) to 2 x 10(9) M(-1) s(-1) for R-NH(2) and 2 x 10(7) to 10(8) M(-1) s(-1) for R-CO(2)(-) type of electron donors, reflecting in principle their standard reduction potentials. The strengths of acids: (+)NH(3)-(*)CH(2), (+)NH(3)-(*)C(CH(3))H, and (+)NH(3)-(*)C(CH(3))(2), pK(a) <4, >6, and >7, respectively, were found to be remarkably strongly dependent on alpha-C substitution. The conjugate bases of these alpha-aminoalkyl radicals reduce anthraquinone-2,6-disulfonate dianion ground state with k(sec) = 3 x 10(9) M(-1) s(-1).  相似文献   

3.
Bichromophoric compound 3 beta-((2-(methoxycarbonyl)bicyclo[2.2.1]hepta-2,5-diene-3-yl)carboxy)androst-5-en-17 beta-yl-[2-(N-carbazolyl)acetate] (NBD-S-CZ) was synthesized and its photochemistry was examined by fluorescence quenching, flash photolysis, and chemically induced dynamic nuclear polarization (CIDNP) methods. Fluorescence quenching measurements show that intramolecular electron transfer from the singlet excited state of the carbazole to the norbornadiene group in NBD-S-CZ occurs with an efficiency (Phi SET) of about 14 % and rate constant (kSET) of about 1.6 x 10(7) s-1. Phosphorescence and flash photolysis studies reveal that intramolecular triplet energy transfer and electron transfer from the triplet carbazole to the norbornadiene group proceed with an efficiency (TET + TT) of about 52 % and rate constant (kTET + kTT) of about 3.3 x 10(5) s-1. Upon selective excitation of the carbazole chromophore, nuclear polarization is detected for protons of the norbornadiene group (emission) and its quadricyclane isomer (enhanced absorption); this suggests that the isomerization of the norbornadiene group to the quadricyclane proceeds by a radical-ion pair recombination mechanism in addition to intramolecular triplet sensitization. The long-distance intramolecular triplet energy transfer and electron transfers starting both from the singlet and triplet excited states are proposed to proceed by a through-bond mechanism.  相似文献   

4.
The efficiency of the chemical pathway of DNA repair is studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP) using the model system containing guanosyl base radicals, and tryptophan as the electron donor. Radicals were generated photochemically by pulsed laser irradiation of a solution containing the photosensitizer 2,2'-dipyridyl, guanosine-5'-monophosphate, and N-acetyl tryptophan. Depending on the pH of the aqueous solution, four protonation states of the guanosyl radical are formed via electron or hydrogen atom transfer to the triplet excited dye. The rate constants of electron transfer from the amino acid to the guanosyl radical were determined by quantitative analysis of the CIDNP kinetics, which is very sensitive to the efficiency of radical reactions in the bulk, and rate constants vary from (1.0 +/- 0.3) x 10(9) M(-1) s(-1) for the cation and dication radicals of the nucleotide to (1.2 +/- 0.3) x 10(7) M(-1) s(-1) for the radical in its anionic form. They were found to be higher than the corresponding values for electron transfer in the case of N-acetyl tyrosine as the reducing agent.  相似文献   

5.
First-order rate constants for deprotonation of the alpha-imino carbon of the adduct between 5'-deoxypyridoxal (1) and glycine were determined as the rate constants for Claisen-type addition of glycine to 1 where deprotonation is rate determining for product formation. There is no significant deprotonation at pH 7.1 of the form of the 1-glycine iminium ion with the pyridine nitrogen in the basic form. The value of kHO for hydroxide ion-catalyzed deprotonation of the alpha-imino carbon increases from 7.5 x 10(2) to 3.8 x 10(5) to 3.0 x 10(7) M(-1) s(-1), respectively, with protonation of the pyridine nitrogen, the phenoxide oxyanion, and the carboxylate anion of the 1-glycine iminium ion. There is a corresponding decrease in the pKas for deprotonation of the alpha-imino carbon from 17 to 11 to 6. It is proposed that enzymes selectively bind and catalyze the reaction of the iminium ion with pKa = 17. A comparison of kB = 1.7 x 10(-3) s(-1) for deprotonation of the alpha-imino carbon of this cofactor-glycine adduct (pKa = 17 by HPO4(2-) with k(cat)/K(m) = 4 x 10(5) M(-1) s(-1) for catalysis of amino-acid racemization by alanine racemase shows that the enzyme causes a ca 2 x 10(8)-fold acceleration of the rate of deprotonation the alpha-imino carbon. This corresponds to about one-half of the burden borne by alanine racemase in catalysis of deprotonation of alanine.  相似文献   

6.
Laser flash photolysis of 7-(piperazin-1-yl) fluoroquinolones leads to the formation of a triplet excited state (3A*) at the end of the pulse (lambdamax 520, 610, and 620 nm for enoxacin, ciprofloxacin, and norfloxacin, respectively). Phosphate and bicarbonate buffers react with 3A* to form a secondary triplet (3B*, reaction rates (0.8-9.9) x 108 M-1 s-1), whose T-T absorption is red-shifted (lambdamax 670 nm for enoxacin, 700 nm for ciprofloxacin and norfloxacin). The formation of a secondary triplet is not a common process and disagrees with previous work suggesting that electron transfer occurs between phosphate buffer and the primary triplet excited state with the formation of the anion radical of the fluoroquinolone (FQ.-). We have shown that the FQ.- transient absorption spectrum is quite distinct from that of 3B*. The photophysical characteristics of 3B* have been determined by energy transfer to naproxen, and it has been found that its energy is lower than that of 3A*.  相似文献   

7.
The uptake of 2,5-dimethylphenol and 2,6-dimethylphenol on aqueous surfaces was measured between 279 and 293 K, using the wetted-wall flow tube technique coupled with UV absorption spectroscopic detection. For both compounds, the uptake coefficients gamma were found to be independent of the KOH scavenger concentration in the range of 0.01 to 1 M (pH > pK(a)) and of the liquid-gas contact times. In addition, the uptake coefficients and the derived mass accommodation coefficients alpha show a negative temperature dependence in the investigated temperature range. The mass accommodation coefficients decrease from 1.1 x 10(-3) to 1.1 x 10(-4), and from 5.4 x 10(-4) to 6.4 x 10(-5) for 2,5-dimethylphenol and 2,6-dimethylphenol, respectively. These results are used to discuss the incorporation of these species into the liquid using the nucleation theory. Henry's law constants (HLC) of both compounds were directly measured using a dynamic equilibrium system based on the water/air equilibrium at the interface within the length of a microporous tube. The measurements were conducted over the range 278-293 K in both deionized water and 35 g L(-1) solution of NaCl. At 293 K and in pure water, HLC were found to be equal to (in units of M atm(-1)): 2,5-dimethylphenol, HLC = (1270 +/- 240); 2,6-dimethylphenol, HLC = (250 +/- 80). All of the values for HLC in 35 g L(-1) salt solution were 5-55% lower than the corresponding values in deionized water, depending on the compound and the temperature. These data (mass accommodation coefficients and Henry's law constants) were then used to estimate the partitioning of these phenolic compounds between gaseous and aqueous phases and the corresponding atmospheric lifetimes under clear sky (tau(gas)) and cloudy conditions (tau(multiphase)) have then been derived. The calculated multiphase lifetimes (in units of hours) are lower than those in gas phase at a cumulus temperature of 283 K (in parentheses): 2,5-dimethylphenol, 2.2 (3.5); 2,6-dimethylphenol, 3.8 (4.2).  相似文献   

8.
The activity of pharmacologically active compounds can be increased by presenting a drug in a defined conformation, which fits exactly into the binding pocket of its target. Herein, the piperazine scaffold was conformationally restricted by substituted C2- or C3-bridges across the 2- and 6-position. At first, a three-step, one-pot procedure was developed to obtain reproducibly piperazine-2,6-diones with various substituents at the N-atoms in high yields. Three strategies for bridging of piperazine-2,6-diones were pursued: 1. The bicyclic mixed ketals 8-benzyl-6-ethoxy-3-(4-methoxybenzyl)-6-(trimethylsilyloxy)-3,8-diazabicyclo[3.2.1]octane-2,4-diones were prepared by Dieckmann analogous cyclization of 2-(3,5-dioxopiperazin-2-yl)acetates. 2. Stepwise allylation, hydroboration and oxidation of piperazine-2,6-diones led to 3-(3,5-dioxopiperazin-2-yl)propionaldehydes. Whereas reaction of such an aldehyde with base provided the bicyclic alcohol 9-benzyl-6-hydroxy-3-(4-methoxybenzyl)-3,9-diazabicyclo[3.3.1]nonane-2,4-dione in only 10 % yield, the corresponding sulfinylimines reacted with base to give N-(2,4-dioxo-3,9-diazabicyclo[3.3.1]nonan-6-yl)-2-methylpropane-2-sulfinamides in >66 % yield. 3. Transformation of a piperazine-2,6-dione with 1,4-dibromobut-2-ene and 3-halo-2-halomethylprop-1-enes provided 3,8-diazabicyclo[3.2.1]octane-2,4-dione and 3,9-diazabicyclo[3.3.1]nonane-2,4-dione with a vinyl group at the C2- or a methylene group at the C3-bridge, respectively. Since bridging via sulfinylimines and the one-pot bridging with 3-bromo-2-bromomethylprop-1-ene gave promising yields, these strategies will be exploited for the synthesis of novel receptor ligands bearing various substituents in a defined orientation at the carbon bridge  相似文献   

9.
Computational studies of proteins based on empirical force fields represent a powerful tool to obtain structure-function relationships at an atomic level, and are central in current efforts to solve the protein folding problem. The results from studies applying these tools are, however, dependent on the quality of the force fields used. In particular, accurate treatment of the peptide backbone is crucial to achieve representative conformational distributions in simulation studies. To improve the treatment of the peptide backbone, quantum mechanical (QM) and molecular mechanical (MM) calculations were undertaken on the alanine, glycine, and proline dipeptides, and the results from these calculations were combined with molecular dynamics (MD) simulations of proteins in crystal and aqueous environments. QM potential energy maps of the alanine and glycine dipeptides at the LMP2/cc-pVxZ//MP2/6-31G* levels, where x = D, T, and Q, were determined, and are compared to available QM studies on these molecules. The LMP2/cc-pVQZ//MP2/6-31G* energy surfaces for all three dipeptides were then used to improve the MM treatment of the dipeptides. These improvements included additional parameter optimization via Monte Carlo simulated annealing and extension of the potential energy function to contain peptide backbone phi, psi dihedral crossterms or a phi, psi grid-based energy correction term. Simultaneously, MD simulations of up to seven proteins in their crystalline environments were used to validate the force field enhancements. Comparison with QM and crystallographic data showed that an additional optimization of the phi, psi dihedral parameters along with the grid-based energy correction were required to yield significant improvements over the CHARMM22 force field. However, systematic deviations in the treatment of phi and psi in the helical and sheet regions were evident. Accordingly, empirical adjustments were made to the grid-based energy correction for alanine and glycine to account for these systematic differences. These adjustments lead to greater deviations from QM data for the two dipeptides but also yielded improved agreement with experimental crystallographic data. These improvements enhance the quality of the CHARMM force field in treating proteins. This extension of the potential energy function is anticipated to facilitate improved treatment of biological macromolecules via MM approaches in general.  相似文献   

10.
We present the photophysical properties of complexes of recombinant human serum albumin (rHSA) with Zn(II)-protoporphyrin IX (ZnPP) and their activities in the photosensitized reduction of water to hydrogen (H2) using methyl viologen (MV2+) as an electron relay. The ZnPP is bound in subdomain IB of wild-type rHSA [rHSA(wt] by an axial coordination of Tyr-161 and, in the rHSA(I142H/Y161L) mutant [rHSA(His], by a His-142 coordination. Both the rHSA(wt)-ZnPP and rHSA(His)-ZnPP complexes showed a long-lived photoexcited triplet state with lifetimes (tauT) of 11 and 2.5 ms, respectively. The accommodation of ZnPP into the protein matrix efficiently eliminated the collisional triplet self-quenching process. The addition of a water-soluble electron acceptor, MV2+, resulted in a significant decrease in the triplet lifetime. The transition absorption spectrum revealed the oxidative quenching of rHSA-3ZnPP* by MV2+. The quenching rate constant (kq) and backward electron transfer rate constant (kb) were determined to be 1.4 x 10(7) and 4.7 x 10(8) M(-1) s(-1) for rHSA(wt)-ZnPP. In the presence of the colloidal PVA-Pt as a catalyst and triethanolamine (TEOA) as a sacrificial electron donor, the photosensitized reduction of water to H2 takes place. The efficiency of the photoproduction of H2 was greater than that of the system using the well-known organic chromophore, tetrakis(1-methylpyridinium-4-yl)porphinatozinc(II) (ZnTMPyP4+), under the same conditions.  相似文献   

11.
Quantum yields as high as 120 were achieved for triplet-sensitized photoisomerizations of several Dewar benzene reactants, R, to the corresponding benzene products, P. Considerable chain amplification is maintained even at high conversion. All relevant rate constants of this triplet chain reaction were extracted from laser flash photolysis plus steady-state photolysis experiments. The crucial rate constant ka for adiabatic isomerization of the triplet reactant to triplet product (R* --> P*) cannot be directly measured because it is so large relative to the bimolecular rate of R* formation via sensitization. However, ka was obtained indirectly using a cage/encounter complex model to analyze the competition between the dissociation of encounter pairs with the sensitizer, e.g., S/R* --> S + R*, and the in-cage processes, S/R* --> S/P* --> S*/P, in nonviscous and viscous solvents. These measurements yielded ka values of (approximately 4-9) x 10(9) s(-1), which suggests that only a small (approximately 3 kcal/mol) energy barrier exists along the potential energy surface from R* to P*. Steady-state data indicated that the chain-terminating rate constant R* --> R is negligibly small, an ideal condition for chain amplification. Triplet energy transfer from a series of sensitizers to the Dewar benzene derivatives shows a nonclassical falloff in rate constants with decreasing sensitizer triplet energy, suggesting energy transfer to thermally distorted configurations having lower singlet-triplet energy gaps. As a result of distorted geometries of R* and P*, the chain-propagating energy transfer from P* to R proceeds with a rate constant of only approximately 2 x 10(7) M(-1) s(-1), despite strong exothermicity. The isomerization reaction can release over 100 kcal/kcal of absorbed photons due to the high-energy content of the reactant together with the large chain length.  相似文献   

12.
The chemistry of the ligand 1, 2,6-bis(imidazol-2-yl)pyridine with manganese, cobalt, nickel and ruthenium has been investigated. The ligand binds as a meridional tridentate ligand as shown by the crystal structures of [Mn(1)2](CF3SO3)2 x Et2O and [Ru(1)2](PF6)2 x 2CH3CN x H2O. The coordinated ligand is deprotonated in mildly basic solution, and this leads to a drop in the metal M(III)/M(II) reduction potential for cobalt and ruthenium of roughly 1.3 V. The crystal structure of Na2(PPN)[Co(1 - 2H)2]2(OH) x MeOH x 2H2O confirms the deprotonation and shows sodium to bind to the deprotonated nitrogen atoms. No stabilisation of the M(III) oxidation state was observed for nickel and manganese.  相似文献   

13.
X-ray crystal structures of several 6-(azolyl)purine base and nucleoside derivatives show essentially coplanar conformations of the purine and appended 6-(azolyl) rings. However, the planes of the purine and imidazole rings are twisted approximately 57 degrees in a 2-chloro-6-(4,5-diphenylimidazol-1-yl)purine nucleoside, and a twist angle of approximately 61 degrees was measured between the planes of the purine and pyrrole rings in the structure of a 6-(2,5-dimethylpyrrol-1-yl)purine nucleoside derivative. Shielding "above" N7 of the purine ring by a proximal C-H on the 6-azolyl moiety is apparent with the coplanar compounds, but this effect is diminished in those without coplanarity. Syntheses of 6-(azolyl)purines from both base and nucleoside starting materials are described. Treatment of 2,6-dichloropurine with imidazole gave 2-chloro-6-(imidazol-1-yl)purine. Modified Appel reactions at C6 of trityl-protected hypoxanthine and guanine derivatives followed by detritylation gave 6-(imidazol-1-yl)- and 2-amino-6-(imidazol-1-yl)purines. Imidazole was introduced at C6 of 2',3',5'-tri-O-acetylinosine by a modified Appel reaction, and solvolysis of the glycosyl linkage gave 6-(imidazol-1-yl)purine. Guanosine triacetate was transformed into the protected 2,6-dichloropurine nucleoside, which was subjected to S(N)Ar displacement with imidazoles at C6 followed by glycosyl solvolysis to provide 2-chloro-6-(substituted-imidazol-1-yl)purines. Potential applications of these purine derivatives are outlined.  相似文献   

14.
To evaluate the effect of neutral C–H bond or electron pair of nitrogen atom with sp2hybridization(N(sp2)) involving into the same chemical environment for anion binding, two analogous tetracationic imidazolium macrocycles, namely cyclo[2](2,6-bis-(1H-imidazol-1-yl)pyridine) [2](1,3-dimethylenebenzene)(14+), and cyclo[2](2,6-bis-(1H-imidazol-1-yl)pyridine)[2](2,6-di methylenepyridine)(24+)were studied in detail as small inorganic anion receptors. The guest anions with different shapes are Cl,N3, NO3, and H2PO4. The host–guest interactions were characterized via1 H NMR spectroscopy,electrospray ionization mass spectrometry(ESI-MS) and single crystal X-ray crystallography. The results implied that macrocyclic hosts with similar backbone but two distinct binding sites(14+with neutral C–H vs. 24+with N(sp2)) vary markedly in their response to anions, including the binding modes and association constants. The finding will serve to the construction of new anion receptors, even improve insights into the anion binding process in biology.  相似文献   

15.
We have recently described a new synthetic route which has been used in our laboratory for the preparation of several novel heterocyclic systems comprising, the I,l-dimethylthiazolidino[3,4-o)piperazine-5,8- dione-3-carboxylic acid and the 2,2-dimethylthiazolidino[3,2-a]piper- azine-5,8-dione-3-carboxylic acid (8). The former was obtained with quan- titative yield and the latter with 71% yield. As a development of our studies on novel 2,5-piperazinedione systems, we describe in this report, the synthesis of the (2,5-dioxopiperazinyl)2-isobutyric acid (9), then-butyl(2-isopropyl)3,6-dioxopiperazinyl-l) acetate (1 l), and another synthetic route, illustrated in Scheme I, by which the compound 8 was obtained with quantitative yield. Spectrometric data were obtained and their interpretation confirms the proposed structure of the new compounds.  相似文献   

16.
A derivative of all-trans-retinal (RAL) and ethanolamine, A2-E, is the main fluorescent component of human retinal lipofuscin. The accumulation of lipofuscin has been correlated with exposure to ambient radiation and loss of photoreceptors. A possible precursor to A2-E is the imine formed from RAL and ethanolamine. This compound, (E,E,E,E)-2-[9-(2-hydroxyethyl)imino-3,7-dimethyl-1,3,5,7- decatrien-1-yl]-1,3,3-trimethylcyclohexene (HIDD), has been synthesized and structurally characterized. The photophysical and photochemical properties of HIDD and its protonated form, HIDD-H+, have been investigated using steady-state and time-resolved methods. Both HIDD and HIDD-H+ are weakly fluorescent, and the fluorescence lifetime and quantum yield for HIDD are ca 0.6 ns and 4.0 +/- 0.5 x 10(-4), respectively. HIDD forms a triplet excited state on direct excitation that decays with kd = 3.4 x 10(4) s-1. The extinction coefficient and quantum yield of intersystem crossing for the HIDD triplet are measured as 7.6 +/- 1.3 x 10(4) M-1 cm-1 and 0.055 +/- 0.006, respectively. The triplet excited state of HIDD-H+ can be sensitized by triplet energy transfer and has a decay rate constant of 1.6 x 10(4) s-1. The lifetime of the HIDD triplet excited state is observed to decrease with increasing concentration of the well-known electron or hydrogen atom donors, 2,3,5,6-tetramethyl-1,4-phenylenediamine and 2,3,5-trimethylhydroquinone, and the bimolecular rate constants for these reactions are approximately 5.4 x 10(6) M-1 s-1 and 1.7 x 10(8) M-1 s-1, respectively. These types of reactions may model photooxidative mechanisms of damage in the retina.  相似文献   

17.
ABTS2-, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) dianion, was used as a reference to compare the reactivity of peroxyl radicals of two amino acids, glycine and valine, in aqueous solutions at natural pH. Peroxyl radicals were produced by pulse radiolysis and the product of their reaction with ABTS2- the ABTS*- radical was observed spectrophotometrically. Experimental kinetic traces were fitted using chemical simulation. The rate constants of reactions of glycine and valine peroxyl radicals with ABTS2- were (6.0+/-0.2)x10(6) and (1.3+/-0.1)x10(5) M-1.s-1, respectively. Moreover, it was found that only 60% of glycine radicals formed upon its reaction with *OH radicals reacted with molecular oxygen to yield peroxyl radicals. Comparison of experimental data with simulations of chemical reactions in irradiated ABTS and ABTS/NaSCN solutions showed that ABTS*- forms in the reaction with *OH with a yield of 43% and rate constant of (5.4+/-0.2)x10(9) M-1.s-1 and in the reaction with (SCN)2*- with a yield of 57% and rate constant of (8.0+/-0.2)x10(8) M-1.s-1.  相似文献   

18.
The rigid rodlike character of phenyleneethynylenes and their ability to communicate charge/excitation energy over long distances have made them useful as molecular linkers in the light energy harvesting assemblies and molecular electronics devices. These linker molecules themselves possess rich photochemistry as evident from the relatively large yields of the excited singlet (0.5-0.66) and triplet (0.4-0.5) states of two model oligomers, 1,4-bis(phenylethynyl)-2,5-bis(hexyloxy)benzene (OPE-1) and 1,4-bis((4-phenylethynyl)phenylethynyl)-2,5-bis(hexyloxy)benzene (OPE-2). In particular, the long-lived triplet excited state is capable of undergoing deactivation by self-quenching processes such as ground-state quenching and triplet-triplet (T-T) annihilation. The T-T annihilation occurs with a nearly diffusion-controlled rate (approximately 2 x 10(9) M(-1) s(-1)), and ground-state quenching occurs with a rate constant of approximately 6 x 10(7) M(-1) s(-1). The electron transfer from the excited OPE-1 and OPE-2 to benzoquinone as characterized from the transient absorption spectroscopy illustrates the ability of these molecules to shuttle the electrons to acceptor moieties. In addition, pulse radiolysis experiments confirm the spectroscopic fingerprint of the cation radical (or "trapped hole") with absorption bands in the 500-600 nm region.  相似文献   

19.
Reactions of alkyl 4-aminobenzoates with maleic anhydride give the corresponding alkyl 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoates, and the latter are converted into 4-(3-dialkylamino-2,5-dioxo-2,3,4,5-tetrahydro-1H-pyrrol-1-yl)benzoates by treatment with secondary amines.  相似文献   

20.
用量子化学DFT方法在B3LYP/3-21G*水平下研究了2-氯吡啶气相光氯化取代反应生成2,3-二氯吡啶、2,4-二氯吡啶、2,5-二氯吡啶和2,6-二氯吡啶不同产物的过渡态,并计算了活化能.结果表明,生成2,6-二氯吡啶过渡态的能量最低,所需的活化能也最低,反应优先生成2,6-二氯吡啶.生成2,6-二氯吡啶的IRC结果显示反应过程中C-H键的断裂和C-C l键的生成协同但不同步.过渡态的构型接近于产物,是一个晚期过渡态.C l原子在反应进程中是给电子的,因此,氯自由基与2-氯吡啶反应是亲核取代的SN2机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号