首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

2.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质.  相似文献   

3.
In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable.  相似文献   

4.

Variable selection for multivariate nonparametric regression models usually involves parameterized approximation for nonparametric functions in the objective function. However, this parameterized approximation often increases the number of parameters significantly, leading to the “curse of dimensionality” and inaccurate estimation. In this paper, we propose a novel and easily implemented approach to do variable selection in nonparametric models without parameterized approximation, enabling selection consistency to be achieved. The proposed method is applied to do variable selection for additive models. A two-stage procedure with selection and adaptive estimation is proposed, and the properties of this method are investigated. This two-stage algorithm is adaptive to the smoothness of the underlying components, and the estimation consistency can reach a parametric rate if the underlying model is really parametric. Simulation studies are conducted to examine the performance of the proposed method. Furthermore, a real data example is analyzed for illustration.

  相似文献   

5.
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function approximations with shrinkage estimations. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the regularized estimators are established. A simulation study and a real data application are undertaken to evaluate the finite sample performance of the proposed method.  相似文献   

6.
In this short paper, we demonstrate that the popular penalized estimation method typically used for variable selection in parametric or semiparametric models can actually provide a way to identify linear components in additive models. Unlike most studies in the literature, we are NOT performing variable selection. Due to the difficulty in a priori deciding which predictors should enter the partially linear additive model as the linear components, such a method will prove useful in practice.  相似文献   

7.
We consider the problem of variable selection for single-index varying-coefficient model, and present a regularized variable selection procedure by combining basis function approximations with SCAD penalty. The proposed procedure simultaneously selects significant covariates with functional coefficients and local significant variables with parametric coefficients. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. The proposed method can naturally be applied to deal with pure single-index model and varying-coefficient model. Finite sample performances of the proposed method are illustrated by a simulation study and the real data analysis.  相似文献   

8.
By using instrumental variable technology and the partial group smoothly clipped absolute deviation penalty method, we propose a variable selection procedure for a class of partially varying coefficient models with endogenous variables. The proposed variable selection method can eliminate the influence of the endogenous variables. With appropriate selection of the tuning parameters, we establish the oracle property of this variable selection procedure. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

9.
Automatic model selection for partially linear models   总被引:1,自引:0,他引:1  
We propose and study a unified procedure for variable selection in partially linear models. A new type of double-penalized least squares is formulated, using the smoothing spline to estimate the nonparametric part and applying a shrinkage penalty on parametric components to achieve model parsimony. Theoretically we show that, with proper choices of the smoothing and regularization parameters, the proposed procedure can be as efficient as the oracle estimator [J. Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of American Statistical Association 96 (2001) 1348–1360]. We also study the asymptotic properties of the estimator when the number of parametric effects diverges with the sample size. Frequentist and Bayesian estimates of the covariance and confidence intervals are derived for the estimators. One great advantage of this procedure is its linear mixed model (LMM) representation, which greatly facilitates its implementation by using standard statistical software. Furthermore, the LMM framework enables one to treat the smoothing parameter as a variance component and hence conveniently estimate it together with other regression coefficients. Extensive numerical studies are conducted to demonstrate the effective performance of the proposed procedure.  相似文献   

10.
Parametric models for categorical ordinal response variables, like the proportional odds model or the continuation ratio model, assume that the predictor is given by a linear form of covariates. In this article the parametric models are extended to include smooth components in a semiparametric or partially parametric fashion. Parts of the covariates are thereby modeled linearly while other covariates are modeled as unspecified but smooth functions. Estimation is based on a combination of local likelihood and profile likelihood and asymptotic properties of the estimates are derived. In a simulation study it is demonstrated that the profile likelihood approach is to be preferred over a backfitting procedure. Two data examples demonstrate the applicability of the models.  相似文献   

11.
This paper develops a robust and efficient estimation procedure for quantile partially linear additive models with longitudinal data, where the nonparametric components are approximated by B spline basis functions. The proposed approach can incorporate the correlation structure between repeated measures to improve estimation efficiency. Moreover, the new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations method for non-normal correlated random errors. However, the proposed estimating functions are non-smooth and non-convex. In order to reduce computational burdens, we apply the induced smoothing method for fast and accurate computation of the parameter estimates and its asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distribution of the estimators for the parametric components and the convergence rate of the estimators for the nonparametric functions. Furthermore, a variable selection procedure based on smooth-threshold estimating equations is developed to simultaneously identify non-zero parametric and nonparametric components. Finally, simulation studies have been conducted to evaluate the finite sample performance of the proposed method, and a real data example is analyzed to illustrate the application of the proposed method.  相似文献   

12.
We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different from all existing covariate-adjusted methods in the literature. Asymptotic properties of the proposed estimators are established. Moreover, we also study variable selection by adopting the coordinate-independent sparse estimation to select all relevant but distorted covariates in the parametric part. We show that the resulting sparse estimators can exclude all irrelevant covariates with probability approaching one. A simulation study is conducted to evaluate the performance of the proposed methods and a real data set is analyzed for illustration.  相似文献   

13.
In this paper, we consider the problem of variable selection and model detection in varying coefficient models with longitudinal data. We propose a combined penalization procedure to select the significant variables, detect the true structure of the model and estimate the unknown regression coefficients simultaneously. With appropriate selection of the tuning parameters, we show that the proposed procedure is consistent in both variable selection and the separation of varying and constant coefficients, and the penalized estimators have the oracle property. Finite sample performances of the proposed method are illustrated by some simulation studies and the real data analysis.  相似文献   

14.
To model the uncertainty in the secondary possibility distributions, this paper develops a new method for handling interval-valued fuzzy variables with variable lower and upper possibility distributions. For a parametric interval-valued fuzzy variable, we define its lower selection variable, upper selection variable and lambda selection variable. The three selection variables are characterized by variable possibility distributions, and their numerical characteristics like expected values and n-th moments are important indices in practical optimization and decision-making problems. Under this consideration, we establish some useful analytical expressions of the expected values and n-th moments for the lambda selections of parametric interval-valued trapezoidal, normal and Erlang fuzzy variables. Furthermore, we focus on the arithmetic about the sums of common parametric interval-valued fuzzy variables. Finally, we apply the proposed optimization indices to a quantitative finance problem, where the second moment is used to measure the risk of a portfolio.  相似文献   

15.
Semiparametric linear transformation models have received much attention due to their high flexibility in modeling survival data. A useful estimating equation procedure was recently proposed by Chen et al. (2002) [21] for linear transformation models to jointly estimate parametric and nonparametric terms. They showed that this procedure can yield a consistent and robust estimator. However, the problem of variable selection for linear transformation models has been less studied, partially because a convenient loss function is not readily available under this context. In this paper, we propose a simple yet powerful approach to achieve both sparse and consistent estimation for linear transformation models. The main idea is to derive a profiled score from the estimating equation of Chen et al. [21], construct a loss function based on the profile scored and its variance, and then minimize the loss subject to some shrinkage penalty. Under regularity conditions, we have shown that the resulting estimator is consistent for both model estimation and variable selection. Furthermore, the estimated parametric terms are asymptotically normal and can achieve a higher efficiency than that yielded from the estimation equations. For computation, we suggest a one-step approximation algorithm which can take advantage of the LARS and build the entire solution path efficiently. Performance of the new procedure is illustrated through numerous simulations and real examples including one microarray data.  相似文献   

16.
Supervised clustering of variables   总被引:1,自引:0,他引:1  
In predictive modelling, highly correlated predictors lead to unstable models that are often difficult to interpret. The selection of features, or the use of latent components that reduce the complexity among correlated observed variables, are common strategies. Our objective with the new procedure that we advocate here is to achieve both purposes: to highlight the group structure among the variables and to identify the most relevant groups of variables for prediction. The proposed procedure is an iterative adaptation of a method developed for the clustering of variables around latent variables (CLV). Modification of the standard CLV algorithm leads to a supervised procedure, in the sense that the variable to be predicted plays an active role in the clustering. The latent variables associated with the groups of variables, selected for their “proximity” to the variable to be predicted and their “internal homogeneity”, are progressively added in a predictive model. The features of the methodology are illustrated based on a simulation study and a real-world application.  相似文献   

17.
This paper develops a robust method to describe fuzzy returns by employing parametric possibility distributions. The parametric possibility distributions are obtained by equivalent value (EV) reduction methods. For common type-2 triangular and trapezoidal fuzzy variables, their reduced fuzzy variables are studied in the current development. The parametric possibility distributions of reduced fuzzy variables are first derived, then the second moment formulas for the reduced fuzzy variables are established. Taking the second moment as a new risk measure, the reward-risk and risk-reward models are developed to optimize fuzzy portfolio selection problems. The mathematical properties of the proposed optimization models are analyzed, including the analytical representations for the second moments of linear combinations of reduced fuzzy variables as well as the convexity of second moments with respect to decision vectors. On the basis of the analytical representations for the second moments, the reward-risk and risk-reward models can be turned into their equivalent parametric quadratic convex programming problems, which can be solved by conventional solution methods or general-purpose software. Finally, some numerical experiments are performed to demonstrate the new modeling ideas and the efficiency of solution method.  相似文献   

18.
Near infrared (NIR) spectroscopy is a rapid, non-destructive technology to predict a variety of wood properties and provides great opportunities to optimize manufacturing processes through the realization of in-line assessment of forest products. In this paper, a novel multivariate regression procedure, the hybrid model of principal component regression (PCR) and partial least squares (PLS), is proposed to develop more accurate prediction models for high-dimensional NIR spectral data. To integrate the merits of PCR and PLS, both principal components defined in PCR and latent variables in PLS are utilized in hybrid models by a common iterative procedure under the constraint that they should keep orthogonal to each other. In addition, we propose the modified sequential forward floating search method, originated in feature selection for classification problems, in order to overcome difficulties of searching the vast number of possible hybrid models. The effectiveness and efficiency of hybrid models are substantiated by experiments with three real-life datasets of forest products. The proposed hybrid approach can be applied in a wide range of applications with high-dimensional spectral data.  相似文献   

19.
This paper introduces the “piggyback bootstrap.” Like the weighted bootstrap, this bootstrap procedure can be used to generate random draws that approximate the joint sampling distribution of the parametric and nonparametric maximum likelihood estimators in various semiparametric models, but the dimension of the maximization problem for each bootstrapped likelihood is smaller. This reduction results in significant computational savings in comparison to the weighted bootstrap. The procedure can be stated quite simply. First obtain a valid random draw for the parametric component of the model. Then take the draw for the nonparametric component to be the maximizer of the weighted bootstrap likelihood with the parametric component fixed at the parametric draw. We prove the procedure is valid for a class of semiparametric models that includes frailty regression models airsing in survival analysis and biased sampling models that have application to vaccine efficacy trials. Bootstrap confidence sets from the piggyback, and weighted bootstraps are compared for biased sampling data from simulated vaccine efficacy trials.  相似文献   

20.
Semiparametric partially linear varying coefficient models (SPLVCM) are frequently used in statistical modeling. With high-dimensional covariates both in parametric and nonparametric part for SPLVCM, sparse modeling is often considered in practice. In this paper, we propose a new estimation and variable selection procedure based on modal regression, where the nonparametric functions are approximated by $B$ -spline basis. The outstanding merit of the proposed variable selection procedure is that it can achieve both robustness and efficiency by introducing an additional tuning parameter (i.e., bandwidth $h$ ). Its oracle property is also established for both the parametric and nonparametric part. Moreover, we give the data-driven bandwidth selection method and propose an EM-type algorithm for the proposed method. Monte Carlo simulation study and real data example are conducted to examine the finite sample performance of the proposed method. Both the simulation results and real data analysis confirm that the newly proposed method works very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号