首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质.  相似文献   

2.
We consider the problem of variable selection for single-index varying-coefficient model, and present a regularized variable selection procedure by combining basis function approximations with SCAD penalty. The proposed procedure simultaneously selects significant covariates with functional coefficients and local significant variables with parametric coefficients. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. The proposed method can naturally be applied to deal with pure single-index model and varying-coefficient model. Finite sample performances of the proposed method are illustrated by a simulation study and the real data analysis.  相似文献   

3.
分位数变系数模型是一种稳健的非参数建模方法.使用变系数模型分析数据时,一个自然的问题是如何同时选择重要变量和从重要变量中识别常数效应变量.本文基于分位数方法研究具有稳健和有效性的估计和变量选择程序.利用局部光滑和自适应组变量选择方法,并对分位数损失函数施加双惩罚,我们获得了惩罚估计.通过BIC准则合适地选择调节参数,提出的变量选择方法具有oracle理论性质,并通过模拟研究和脂肪实例数据分析来说明新方法的有用性.数值结果表明,在不需要知道关于变量和误差分布的任何信息前提下,本文提出的方法能够识别不重要变量同时能区分出常数效应变量.  相似文献   

4.
In this paper, we present a variable selection procedure by using basis function approximations and a partial group SCAD penalty for semiparametric varying coefficient partially linear models with longitudinal data. With appropriate selection of the tuning parameters, we establish the oracle property of this procedure. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

5.
When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

6.
Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estimator on the variable selection for the parameters components.Under some regularity conditions,the rate of convergence and asymptotic normality of the resulting estimators are established.In addition,to improve efficiency for regression coefficients,the estimation of the working covariance matrix is involved in the proposed iterative algorithm.Some simulation studies are carried out to demonstrate that the proposed method performs well.  相似文献   

7.
??When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

8.
本文考虑了纵向数据线性EV模型的变量选择.基于二次推断函数方法和压缩方法的思想提出了一种新的偏差校正的变量选择方法.在选择适当的调整参数下,我们证明了所得到的估计量的相合性和渐近正态性.最后通过模拟研究验证了所提出的变量选择方法的有限样本性质.  相似文献   

9.
In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable.  相似文献   

10.
By using instrumental variable technology and the partial group smoothly clipped absolute deviation penalty method, we propose a variable selection procedure for a class of partially varying coefficient models with endogenous variables. The proposed variable selection method can eliminate the influence of the endogenous variables. With appropriate selection of the tuning parameters, we establish the oracle property of this variable selection procedure. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

11.
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function approximations with shrinkage estimations. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the regularized estimators are established. A simulation study and a real data application are undertaken to evaluate the finite sample performance of the proposed method.  相似文献   

12.
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

13.

In this paper, we investigate the quantile varying coefficient model for longitudinal data, where the unknown nonparametric functions are approximated by polynomial splines and the estimators are obtained by minimizing the quadratic inference function. The theoretical properties of the resulting estimators are established, and they achieve the optimal convergence rate for the nonparametric functions. Since the objective function is non-smooth, an estimation procedure is proposed that uses induced smoothing and we prove that the smoothed estimator is asymptotically equivalent to the original estimator. Moreover, we propose a variable selection procedure based on the regularization method, which can simultaneously estimate and select important nonparametric components and has the asymptotic oracle property. Extensive simulations and a real data analysis show the usefulness of the proposed method.

  相似文献   

14.
In this paper,we present a variable selection procedure by combining basis function approximations with penalized estimating equations for varying-coefficient models with missing response at random.With appropriate selection of the tuning parameters,we establish the consistency of the variable selection procedure and the optimal convergence rate of the regularized estimators.A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

15.
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas.Variable selection for these models consists of two components:model selection for non-parametric components and selection of significant variables for the parametric portion.In this paper,we consider a variable selection procedure by combining basis function approximation with SCAD penalty.The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components.With appropriate selection of tuning parameters,we establish the consistency and sparseness of this procedure.  相似文献   

16.
We consider the problem of variable selection for the fixed effects varying coefficient models.A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.  相似文献   

17.
在响应变量带有单调缺失的情形下考虑高维纵向线性回归模型的变量选择.主要基于逆概率加权广义估计方程提出了一种自动的变量选择方法,该方法不使用现有的惩罚函数,不涉及惩罚函数非凸最优化的问题,并且可以自动地剔除零回归系数,同时得到非零回归系数的估计.在一定正则条件下,证明了该变量选择方法具有Oracle性质.最后,通过模拟研究验证了所提出方法的有限样本性质.  相似文献   

18.
We propose a two-step variable selection procedure for censored quantile regression with high dimensional predictors. To account for censoring data in high dimensional case, we employ effective dimension reduction and the ideas of informative subset idea. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. Simulation study and real data analysis are conducted to evaluate the finite sample performance of the proposed approach.  相似文献   

19.
In this article, we propose a new Bayesian variable selection (BVS) approach via the graphical model and the Ising model, which we refer to as the “Bayesian Ising graphical model” (BIGM). The BIGM is developed by showing that the BVS problem based on the linear regression model can be considered as a complete graph and described by an Ising model with random interactions. There are several advantages of our BIGM: it is easy to (i) employ the single-site updating and cluster updating algorithm, both of which are suitable for problems with small sample sizes and a larger number of variables, (ii) extend this approach to nonparametric regression models, and (iii) incorporate graphical prior information. In our BIGM, the interactions are determined by the linear model coefficients, so we systematically study the performance of different scale normal mixture priors for the model coefficients by adopting the global-local shrinkage strategy. Our results indicate that the best prior for the model coefficients in terms of variable selection should place substantial weight on small, nonzero shrinkage. The methods are illustrated with simulated and real data. Supplementary materials for this article are available online.  相似文献   

20.
The smooth integration of counting and absolute deviation (SICA) penalized variable selection procedure for high-dimensional linear regression models is proposed by Lv and Fan (2009). In this article, we extend their idea to Cox's proportional hazards (PH) model by using a penalized log partial likelihood with the SICA penalty. The number of the regression coefficients is allowed to grow with the sample size. Based on an approximation to the inverse of the Hessian matrix, the proposed method can be easily carried out with the smoothing quasi-Newton (SQN) algorithm. Under appropriate sparsity conditions, we show that the resulting estimator of the regression coefficients possesses the oracle property. We perform an extensive simulation study to compare our approach with other methods and illustrate it on a well known PBC data for predicting survival from risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号