首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extended study of seven fused silica capillary gas chromatographic (GC) columns has been conducted with regard to separation of international toxic equivalent factor (I-TEF) isomers (tetra- through octa-chlorinated at 2,3,7,8 positions) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) from closely co-eluted other isomers using high-resolution gas chromatography-high-resolution mass spectrometry (HRGC-HRMS). The data are explicated in mass chromatograms of Series 5 GC columns from a variety of manufacturers (Varian CP-Sil 8 CB LowBleed/MS, Phenomenex ZB-5UMS, Agilent HP-5MS, Restek Rtx-5MS, Supelco Equity-5, J&W Scientific DB-5 and DB-5MS), according to relative retention times, and 2,3,7,8-substituted isomer concentrations for each of the columns tested. Results showed differences between 5% phenyl methyl silicone and 5% silphenylene (Si-arylene) silicone polymer type GC stationary phases in separation of 2,3,7,8-substituted PCDDs/PCDFs from closely co-eluted isomers. The separation differences for Si-arylene type columns resulted in lower toxic equivalence (TEQ) values compared to the siloxane-based columns. Because of differences in product nomenclature and manufacturing practices by various manufacturers, incorrect assumptions and comparisons may be made regarding the interchangeability of these columns for PCCD/PCDF separations. The data presented are the most comprehensive to date and provide a valuable addition to operational criteria for the standard US Environmental Protection Agency methods 1613b and 8290.  相似文献   

2.
Trace analysis of 2,3,7,8-polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and the 12 WHO-PCBs (four non-ortho and eight mono-ortho congeners that have been assigned toxic equivalence factors, TEFs, by the World Health Organisation) was conducted by comprehensive two-dimensional gas chromatography with a micro electron-capture detector (GC x GC-microECD). Four food matrices (fish oil from herring, spiked cows' milk, vegetable oil and an eel extract) were analysed by two GC x GC laboratories, and four GC-HRMS laboratories generated reference values. The two GC x GC laboratories used different column combinations for separating the target analytes. For the first dimension, non-polar DB-XLB and VF-1 columns were used, and for the second dimension, an LC-50 liquid crystalline column with unique selectivity for planar compounds. The congener-specific and total toxic equivalence (TEQ) data obtained using DB-XLB x LC-50 were in good agreement with results obtained by the GC-HRMS laboratories. The WHO-PCB data obtained with the VF-1 x LC-50 combination was also good, but the PCDD/F concentrations were sometimes overestimated due to matrix interferences. GC x GC-microECD using DB-XLB x LC-50 seems to fulfil the European Community requirements of a screening method for PCDD/F and WHO-PCB TEQ in food.  相似文献   

3.
Glass capillaries coated with four crosslinked and surface-bonded OH-terminated polysiloxanes [PS 347.5, OV-17-OH, OV-225-OH, and OV-240-OH] were compared with commonly used methyl-terminated SP-2330-coated columns with respect to their selectivity for the separation of 2,3,7,8-chloro-substituted dibenzo-p-dioxins and dibenzofurans. The methyl- and phenyl-substituted phases [PS 347.5 and OV-17-OH] exhibit only moderate isomer selectivity which limits their applicability in this field. The examined 3-cyanopropyl-substituted phases [OV-225-OH, OV-240-OH, and SP-2330] allow complete separation of all 2,3,7,8-chlorosubstituted PCDDs and PCDFs. With SP-2330 longer columns are required (50 m) for baseline separation of critical groups of isomers. OV-225-OH was found to be the most suitable phase as to isomer selectivity. In comparison to SP-2330, the analysis times can be reduced by a factor of two.  相似文献   

4.
Separations of 12 compound classes, polychlorinated biphenyls (PCBs), diphenyl ethers (PCDEs), naphthalenes (PCNs), dibenzothiophenes (PCDTs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), terphenyls (PCTs) and alkanes (PCAs), toxaphene, organohalogenated pesticides (OCPs), and polybrominated biphenyls (PBBs) and diphenyl ethers (PBDEs) by comprehensive two-dimensional gas chromatography were evaluated. Five column combinations, DB-1 x 007-210, DB-1 x HT-8, DB-1 x LC-50, DB-1 x 007-65HT and DB-1 x VF-23ms were used to study, primarily, group-type separations, but attention was devoted also to within-class separation, especially for those classes which were not addressed in much detail before, the PCNs, OCPs, PBBs and PCTs. The DB-1 x 007-210 column set did not offer any extra separation compared to one-dimensional GC. For the DB-1 x HT-8 column combination, the useful principle of congener separation on the basis of number of halogen substituents in a molecule was confirmed (PCBs, toxaphene) and extended (PCTs, PBDEs). No practically useful group-type separation was observed for this column combination. The DB-1 x LC-50 set provides group separation based on planarity: planar compounds such as PCDDs, PCDFs, PCDTs and PCNs are much more retained than, and therefore separated from, non-planar analytes. Within the classes of PCBs, PBBs and PCTs highly useful separation of planar from non-planar compounds was also observed. The DB-1 x 007-65HT column set effectively separates PCAs and PBDEs from all other compound classes, and provides a good separation of brominated and chlorinated analogue classes from each other. This column set was the most efficient one for within-class separation of OCPs and PCNs. Finally, DB-1 x VF-23ms yields excellent within-class separations, especially of non-aromatic compounds, viz. OCPs, toxaphene and PCAs. No group separation was observed here. The applicability of the approach was demonstrated for a sediment extract and a dust extract. In the sediment extract, PCDDs, PCDFs, PCAs and PCNs were identified and their efficient separation was achieved. In the dust sample, separation of PCAs and PBDEs was achieved and several new PBDE congeners were identified.  相似文献   

5.
A clean-up step prior to the determination of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) based on normal- phase HPLC on a 2-(1-pyrenyl)ethyldimethyl silylated silica column is presented. With hexane as mobile phase, polychlorobiphenyls (including highly chlorinated non-ortho isomers) and organochlorine pesticides are eluted in the first fraction. The total fraction of PCDDs and PCDFs can be eluted by backflushing. By application of a gradient, all congeners are eluted within 75 min. The retention order of the PCDDs and PCDFs is predominantly governed by the degree of chlorination, but the substitution pattern also has a strong influence. Subtractions of the PCDD/PCDF fraction can be taken. The fraction containing 2,3,7,8-tetrachlorodibenzo-p-dioxin was isolated. The three tetrachlorodibenzo- p-dioxin isomers of this fraction were baseline separated on a non-polar capillary GC column.  相似文献   

6.
The solvation parameter model is used to characterize the retention properties of the bis(cyanopropylsiloxane)-co-methylsilarylene, HP-88, and poly(siloxane), Rtx-440, stationary phases over the temperature range 60-140 degrees C. HP-88 is among the most cohesive, dipolar/polarizable and hydrogen-bond basic of stationary phases for open-tubular column gas chromatography. It has no hydrogen-bond acidity or capacity for electron lone pair interactions. It exhibits similar selectivity to the poly(cyanopropylsiloxane) stationary phase SP-2340. Rtx-440 is a low-polarity, low-cohesion stationary phase with a moderate capacity for dipolar/polarizable and hydrogen-bond base interactions. It has no hydrogen-bond acidity and possesses weak electron lone pair interactions. It has unique selectivity when compared against a system constants database for 28 common stationary phase compositions. Cluster analysis indicated that the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer, DB-1301, the poly(dimethyldiphenylsiloxane) stationary phase containing 20% diphenylsiloxane monomer, Rtx-20, the poly(siloxane) stationary phase of unknown composition, DB-624, and DX-1 [a mixture of poly(dimethylsiloxane) and poly(ethylene glycol) 9:1] are the closest selectivity matches in the database. The selectivity of DB-1301 and Rtx-440 are very similar for solutes with weak hydrogen-bond acidity allowing one stationary phase to be substituted for the other with likely success. For strong hydrogen-bond acids, such as phenols, DB-1301 and Rtx-440 exhibit different selectivity.  相似文献   

7.
The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.  相似文献   

8.
Comprehensive Gas Chromatography-Time-of-Flight Mass Spectrometry (GC×GC-TOFMS) methodology has been refined for the analysis of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in samples with different matrices. This is specifically for application in developing countries where access to gas chromatography-high resolution mass spectrometry (GC-HRMS) and highly skilled personnel is limited. The method, using an Rxi-5 Sil MS column in the first dimension ((1)D) coupled with an Rtx-200 column in the second dimension ((2)D), was used to quantify PCDDs and PCDFs in different environmental sample matrices. The results were compared with those obtained using GC-HRMS and good agreement was observed. The limit of detection (LOD) for the method (300fg on column for spiked soil samples) was determined using an Rxi-XLB ((1)D) column coupled with an Rtx-200 column ((2)D). Preliminary South African sample results are also discussed. Isomer specificity for different tetrachloro dibenzo-p-dioxins (TCDDs) and tetrachloro dibenzofurans (TCDFs) was investigated using a commercial standard. Adequate resolution was achieved. The method as described has great attraction for developing countries being both financially and operationally favourable.  相似文献   

9.
Comprehensive two-dimensional gas chromatography (GC x GC) with electron-capture detection (ECD) has been optimized for the separation of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans and 12 dioxin-like polychlorinated biphenyls, with emphasis on the selection of the first- and second-dimension, commercially available, columns. When eight second-dimension columns were subsequently combined with a 100% methylpolysiloxane stationary phase (DB-1) in the first dimension to create orthogonal conditions, a complete separation of all congeners with different TEF values was obtained with two column combinations, DB-1 x VF-23 and DB-1 x LC-50. When other types of first-dimension columns were used (and orthogonality was partly sacrificed), a DB-XLB column combined with 007-65HT, VF-23 and LC-50 was found to provide a complete separation of all 29 priority congeners. Next, the potential of these three column combinations for real-life analysis was preliminarily studied. With a spiked and fractionated milk extract, DB-XLB x LC-50 was found to be the most powerful column combination, because of the good separation of the 29 priority congeners from each other as well as from the matrix constituents. Quantitative performance (close to three-order linearity; LODs, 30-150 fg injected; R.S.D.s, 1.5-6.5% (n = 10)) was satisfactory.  相似文献   

10.
Separations of eight persistent organohalogenated classes of pollutants, organochlorinated pesticides (OCPs), polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated naphthalenes (PCNs), polychlorinated terphenyls (PCTs) and toxaphene (CTT) by comprehensive two-dimensional gas chromatography (GC x GC) were evaluated. Columns with different polarity and selectivity, including ZB-5, HT-8, DB-17 and BP-10, were selected as first dimension and combined with columns of increasing polarity in the second dimension, i.e. HT-8, BPX-50 and Carbowax (or Supelcowax-10). In total nine column combinations were tested. Because the main interest of the study was fast screening of the test xenobiotic families in complex matrices, in all cases, attention was primarily focussed on group-type separation. Nevertheless, within-group separation was also considered, especially for those classes containing particularly toxic congeners, such as PCBs and PCDD/Fs. Although none of the assayed column sets allowed the simultaneous and complete separation of all pollutants classes, some column combinations provided satisfactory separations among selected families and the rest of pollutants investigated. That was, for instance, the case of HT-8 x BPX-50 for PBDEs and PCDD/Fs, DB-17 x HT-8 for PCNs and OCPs and BP-10 x BPX-50 for CTT, PCDD/Fs and PBDEs. The feasibility of the proposed approach for the fast screening of the target classes of pollutants in complex samples was illustrated by the analysis of food and marine fat samples prepared using simplified miniaturised sample treatment methods.  相似文献   

11.
This study examines the effect of the column operating temperature of 100 m SP-2560 and CP-Sil 88 capillary gas chromatographic (GC) columns on the separation of cis- and trans-octadecenoic (18:1) isomers in partially hydrogenated vegetable oils. The overlapping GC peaks were measured at column isothermal temperatures of 170, 175, 180, 185, and 190 degrees C. With both columns, isothermal operation at 180 degrees C produced the fewest overlapping peaks of the cis and trans isomers. At this temperature, all trans-18:1 isomers, except 13t-18:1 (t = trans), 14t-18:1, and 15t-18:1 isomers were resolved from the cis-18:1 isomers. The peaks of the 13t-18:1 and 14t-18:1 isomer pair, which always elute together, overlapped peaks of the 6c-18:1 (c = cis), 7c-18:1, and 8c-18:1 isomers; the peak of the 15t-18:1 isomer overlapped the major cis-18:1 peak, which was mainly due to 9c-18:1. Isothermal operations above or below 180 degrees C produced some additional overlapping problems. At 185 and 190 degrees C, the peaks of the 16t-18:1 and 13c-18:1 isomers overlapped. At 175 and 170 degrees C, the 16t-18:1 peak overlapped the 14c-18:1 peak, and the peaks of the 13t + 14t-18:1 isomer pair partially overlapped the major cis-18:1 peak. The separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers was also affected by the column operating temperature. Isothermal operation of the SP-2560 column at 180 degrees C produced a baseline separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers, whereas with the CP-Sil 88 column the best resolution was obtained at 170 degrees C. The results of this study show that the SP-2560 capillary column has a slight advantage over the CP-Sil 88 column for the simultaneous resolution of all the fatty acids generally found in partially hydrogenated vegetable oils.  相似文献   

12.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in slag of fly ash from three municipal solid waste (MSW) incinerators were analyzed to observe any changes in characteristics and distribution of their congeners by melting process. Actual concentration and Toxic Equivalent (TEQ) concentration profiles of 17 major congeners of PCDDs/PCDFs for gas, fly ash and melted slag were compared. The distributions of PCDDs/PCDFs in different streams macroscopically showed similarities with the generally known profiles for emission gas from a municipal waste incinerator. The total concentrations of PCDDs/PCDFs in off-gas and fly ash have been known to be a function of incineration conditions and of air pollution control device utilization; however, their normalized distributions were independent of such conditions. The concentrations of PCDDs/PCDFs in the melted slag of fly ash were not related to the concentrations of PCDDs/PCDFs congeners in fly ash but were rather a function of the melting furnace type and operation. The total amount of PCDDs/PCDFs in the melted slag of fly ash contained almost 150–27,000 times less dioxin than that in fly ash, however, the TEQ of dioxin in the slag was reduced by 435–43,500 times, which could enable them to be utilized as recycled construction materials. In normalized TEQ concentration profiles of 17 congeners of PCDDs/PCDFs, the ratio of PCDFs to PCDDs changed from 1.32 to 2.19 by melting, which showed relatively higher portion of furans left in melted slag than those in fly ash. By comparing reduction ratios of different congeners, PCDDs (dioxins) were relatively easier to destruct than PCDFs (furans) during melting process. The most difficult congener to destruct could be octa-chlorinated dibenzofuran (OCDF) among major congeners. For slag cooling methods, dioxin concentration in TEQ of slow cooled slag by air was four times higher than that of fast cooled slag by water. Thus cooling by water is more appropriate with the added beneficial effect of producing granules/particles, which can be utilized as roadbed materials.  相似文献   

13.
A comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC x GC-TOF-MS) experimental setup was tested for the measurement of seven 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs), ten 2,3,7,8-substituted polychlorinated dibenzofurans (PCDFs), four non-ortho-polychlorinated biphenyls (PCBs), eight mono-ortho-PCBs, and six indicator PCBs (Aroclor 1260) in foodstuff samples. A 40m RTX-500 (0.18mm I.D., 0.10 microm df) was used as the first dimension (1D) and a 1.5 m BPX-50 (0.10mm I.D., 0.10 microm df) as the second dimension (2D). The GC x GC chromatographic separation was completed in 45 min. Quantification was performed using 13C-label isotope dilution (ID). Isotope ratios of the selected quantification ions were checked against theoretical values prior to peak assignment and quantification. The dynamic working range spanned three orders of magnitude. The lowest detectable amount of 2,3,7,8-TCDD was 0.2 pg. Fish, pork, and milk samples were considered. On a congener basis, the GC x GC-ID-TOF-MS method was compared to the reference GC-ID high resolution mass spectrometry (HRMS) method and to the alternative GC-ID tandem-in-time quadrupole ion storage mass spectrometry (QIST-MS/MS). PCB levels ranged from low picogram (pg) to low nanogram (ng) per gram of sample and data compared very well between the different methods. For all matrices, PCDD/Fs were at a low pg level (0.05-3 pg) on a fresh weight basis. Although congener profiles were accurately described, RSDs of GC x GC-ID-TOF-MS and GC-QIST-MS/MS were much higher than for GC-ID-HRMS, especially for low level pork and milk. On a toxic equivalent (TEQ) basis, all methods, including the dioxin-responsive chemically activated luciferase gene expression (DR-CALUX) assay, produced similar responses. A cost comparison is also presented.  相似文献   

14.
A GC-μECD and a GC×GC-μECD method were developed for the analysis of pesticides in sediments. For 1D-GC, instrumental LOD and LOQ were found in the range from 0.60 to 2.31μgL(-1) and 1.83 to 5.62μgL(-1), respectively. For GC×GC method development two sets of columns were tested (DB-5/DB-17ms, and HP-50+/DB-1ms), and the best results were obtained with the set of columns DB-5/DB-17ms. Instrumental LOD and LOQ were found in the range from 0.08 to 1.07μgL(-1) and 0.25 to 3.23μgL(-1), respectively. The LOD for the GC×GC was about 36% lower than those obtained for the 1D-GC. Concentrations of 21.18μgkg(-1) through 1D-GC method and 3.34μgkg(-1) for GC×GC for trifloxystrobin were found in a sediment sample which was collected close to an area of rice plantation.  相似文献   

15.
16.
Polychlorinated naphthalenes (PCNs) are candidates for inclusion in the Stockholm Convention on persistent organic pollutants. PCNs are structurally and toxicologically similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and its analogues. Intake in food is considered to be an important human exposure pathway for PCNs. In this preliminary study, cheese and butter samples were analysed for PCNs, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) using an isotope dilution gas chromatography high-resolution mass spectrometry method. The aim of this study was to evaluate the PCN concentrations in the cheese and butter samples and to compare them with the PCDD, PCDF and PCB concentrations. The PCN concentrations were 5.6–103 pg g?1 of wet weight in the seven cheese samples tested and 5.0–199 pg g?1 of wet weight in the seven butter samples tested. The mass concentrations of lower chlorinated congeners were greater than those of the higher chlorinated congeners. Congeners of CN45/36, CN27/30 and CN33/34/37 were much more abundant than other congeners found in tetrachlorinated PCNs. Congeners of CN51, CN66/67 and CN73 were determined to be the predominant congeners in penta-, hexa- and heptachlorinated homologs, respectively. The PCNs contributed around 5% of the total PCN, PCDD, PCDF and PCB toxic equivalence (TEQ) values. CN73 was found to be the dominant PCN congener and contributed more than 40% to the PCN TEQ value. Congeners CN66/67, CN69 and CN63 were also found at relatively high levels. The PCB congener CB118 was the predominant congener (by mass-based concentration) of the 12 dioxin-like PCBs (dl-PCBs). The PCBs contributed 53.8% of the total TEQ, and congener CB126 contributed more than any other compound that was analysed to the total TEQ. The PCDDs and PCDFs contributed 11.6% and 29.7% of the total TEQ values, respectively.  相似文献   

17.
A multidimensional approach for the identification of fatty acid methyl esters (FAME) based on GC/MS analysis is described. Mass spectra and retention data of more than 130 FAME from various sources (chain lengths in the range from 4 to 24 carbon atoms) were collected in a database. Hints for the interpretation of FAME mass spectra are given and relevant diagnostic marker ions are deduced indicating specific groups of fatty acids. To verify the identity of single species and to ensure an optimized chromatographic resolution, the database was compiled with retention data libraries acquired on columns of different polarity (HP-5, DB-23, and HP-88). For a combined use of mass spectra and retention data standardized methods of measurement for each of these columns are required. Such master methods were developed and always applied under the conditions of retention time locking (RTL) which allowed an excellent reproducibility and comparability of absolute retention times. Moreover, as a relative retention index system, equivalent chain lengths (ECL) of FAME were determined by linear interpolation. To compare and to predict ECL values by means of structural features, fractional chain lengths (FCL) were calculated and fitted as well. As shown in an example, the use of retention data and mass spectral information together in a database search leads to an improved and reliable identification of FAME (including positional and geometrical isomers) without further derivatizations.  相似文献   

18.
应用Agilent GC 6890气相色谱仪(附FPD检测器)对13种残留于西兰花中的有机含磷农药(OPP′s)在4种不同极性的毛细管色谱柱(即DB-1、DB-5、DB-1701及DB-35MS)上的保留行为作了研究。结果表明:采用由DB-5及DB-1701串联组成的色谱柱单元,西兰花中13种残留OPP′s可达到有效分离和测定。  相似文献   

19.
Glass capillaries were leached, dehydrated, persilylated with 1, 3-bis (3-cyanopropyl) tetramethyldisiloxane, and coated with OV-240-OH. After crosslinking and binding the phase to the glass surface the columns showed high separation efficiency, high temperature stability, and inertness comparable to persilylated apolar columns. Column performance is shown to be superior to liquid phase cyanopropyl columns such as SP 2330. The excellent separation capabilities together with the selectivity of the phase makes OV-240-OH coated columns a valuable tool for the determination of toxic isomers in complex mixtures of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The order of elution of individual TCDD isomers was found to be similar to that described for SP 2330 or Silar 10c. The detection of PCDDs and PCDFs in a fly ash extract further illustrates the utility of OV-240-OH coated columns. The high temperature limit of these columns opens the way for the analysis of high boiling compounds such as mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans.  相似文献   

20.
The gas chromatographic (GC) retention times of 180 polybrominated diphenyl ethers (PBDEs) were obtained under different operational conditions on two types of commonly used capillary columns, Restek Rtx-1614 and J&W DB-5MS, of different dimensions. The relative retention times (RRTs) for PBDEs were calculated by normalizing the retention times of individual congeners to the sum of those of BDEs 47 and 183. In clear contrast to polychlorinated biphenyls (PCBs), the elution of PBDEs has few cross-homolog overlaps, and this observation is discussed in terms of molecular conformation with regard to co-planarity. Within a homolog, ortho substitution in PBDEs tends to decrease GC retention, and such an effect is stronger for higher homologs. With the RRT database established in this work, a simple approach is evaluated for the identification of all mono to hepta PBDEs from the RRTs of 39 congeners under various GC conditions to facilitate the identification of unknown PBDE peaks for which chemical standards are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号