首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用分子动力学方法研究了(5,5)扶手椅型和(10,10)锯齿型纳米碳管在水中受拉伸负载下的机械性质.通过计算纳米碳管中氧和氢原子的局部密度分布研究了限制效应.结果表明,碳管在水中的杨式系数与在真空下相同,而碳管在水中的拉伸应力小于在真空中的.  相似文献   

2.
We have investigated the density and temperature dependences of microscopic structure and hydrogen bond dynamics of water inside carbon nanotubes (CNTs) using molecular dynamics simulation. The CNTs are treated as rigid, and smoothly truncated extended simple point charge water model is adopted. The results show that as the overall density increases, the atomic density profiles of water inside CNTs become sharper, the peaks shift closer to the wall, and a new peak of hydrogen atomic density appears between the first (outermost) and second layer. The intermittent hydrogen bond correlation function C(HB)(t) of water inside CNTs decays slower than that of bulk water, and the rate of decay decreases as the tube diameter decreases. C(HB)(t) clearly decays more slowly for the first layer of water than for other regions inside CNTs. The C(HB)(t) of the interlayer hydrogen bonds decays faster than those of the other regions and even faster than that of the bulk water. On the other hand, the hydrogen bond lifetimes of the first layer are shorter than those of the inner layer(s). Interlayer hydrogen bond lifetimes are clearly shorter than those of the constituent layers. As a whole, the hydrogen bond lifetimes of water inside CNTs are shorter than those of bulk water, while the relaxation of C(HB)(t) is slower for the confined water than for bulk water. In other words, hydrogen bonds of water inside CNTs break more easily than those of bulk water, but the water molecules remain in each other's vicinity and can easily reform the bonds.  相似文献   

3.
Water confined in a sol-gel network has been characterized by x-ray and neutron diffraction for two samples of mesoporous silica: one with a hydrophilic character (a nonmodified one) and another with a hydrophobic character (a modified one with a methylated internal pore surface). The pore size has been previously characterized [J. Jelassi et al., Phys. Chem. Chem. Phys. 134, 1039 (2010)] to have a mean pore diameter of approximately 55 A?. The diffraction measurements presented in this paper have been made at room temperature [293 K] for a filling factor of 0.45, giving a mean thickness of 8-9 A? for the water layer. The results show that the local order of the confined water molecules in the intermediate region of 3-6 A? is significantly different from that of the bulk water and also for the two different environments. For the hydrophilic sample, the siloxyl groups at the surface modify the water structure through the effects of interfacial hydrogen-bonding, which influences the orientational configuration of local water molecules and creates a modified spatial arrangement in the pore. In the case of the hydrophobic sample, there is no specific interaction with the pore wall, which is primarily van der Waals type, and the water molecules at the interface are differently oriented to create a hydrogen-bonded network linked more directly to the rest of the water volume. In the present circumstances, the thickness of the water layer has a relatively small dimension so that the interpretation of the measured diffraction pattern is not as straightforward as for the bulk liquids, and it is necessary to consider the effects of diffraction-broadening from a distributed sample volume and also the contribution from cross-terms that remain after conducting a "wet-minus-dry" analysis procedure. These analytic difficulties are discussed in the context of the present measurements and compared with the work of other groups engaged in the study of water confined in different environments. The present results, again, emphasize the complexity influencing the properties of water in a confined geometry and the strong influence of surface interactions on its behavior.  相似文献   

4.
Structure and dynamics of water confined in channels of diameter of few nanometer in size strongly differ from the ones of water in the bulk phase. Here, we present radiowave dielectric relaxation measurements on water-filled single-walled carbon nanotubes, with the aim of highlighting some aspects on the molecular electric dipole organization of water responding to high spatial confinement in a hydrophobic environment. The observed dielectric spectra, resulting into two contiguous relaxation processes, allow us to separate the confined water in the interior of the nanotubes from external water, providing support for the existence in the confinement region of water domains held together by hydrogen bonds. Our results, based on the deconvolution of the dielectric spectra due to the presence of a bulk and a confined water phase, furnish a significantly higher Kirkwood correlation factor, larger than the one of water in bulk phase, indicating a strong correlation between water molecules inside nanotubes, not seen in bulk water.  相似文献   

5.
The evolution of water structure during the gelation process is examined in aqueous solution of agarose using Raman spectroscopy of the O-H stretching band. The measurements have been performed at room temperature for different concentrations of agarose, which yields different dimensions of nanopores in the network of the created gel. Our results show that water confined in the gel pores exhibits evident changes in the local order of molecules in comparison with bulk water and water in the sol state. During the sol-gel transition the number of molecules that participate in the regular tetrahedral H-bond structure increases, and the effect is stronger for higher concentration of the biopolymer.  相似文献   

6.
Scanning transmission X-ray microscopy was demonstrated to deliver detailed local structure and chemical composition of a complicated system with titania nanoparticles dispersed inside and outside the double-walled carbon nanotube (DWNT) channels. Areas with inhomogeneous distribution of titania and the associated water were particularly investigated at the C K-edge, Ti L-edge, and O K-edge. The results show that titania nanoparticles located inside DWNTs are present as amorphous, while those unsuccessfully introduced into the channels behave more like bulk materials in forms of anatase and rutile. Strong interaction was detected between the confined titania and DWNTs, as evidenced by up to 0.6 eV energy shift at the Ti L-edge. Strong hydration was observed for the as-prepared samples. Functionalization due to reduction and oxidation between titania and carbon layer is observed upon heat-treatment. This detailed structural information of specific areas cannot be provided by other techniques such as HRTEM, XRD, and XANES.  相似文献   

7.
The fluid structure and transport properties of water confined in single-walled carbon nanotubes (CNTs) with different diameters have been investigated by molecular-dynamics simulation. The effects of CNT diameter, density of water, and temperature on the molecular distributions and transport behaviors of water were analyzed. It is interesting that the water molecules ordered in helix inside the (10, 10) CNT, and the layered distribution was clearly observed. It was found that the axial and radial diffusivities in CNTs were much lower than that of the bulk, and it ever decreased as the diameter of CNT decreases. The axial thermal conductivity and shear viscosity in CNTs are obviously larger than that of the bulk and those in the radial direction, they increase sharply as the diameter of CNT decreases, which is clearly in contrast to the diffusivity. The inner space of CNT and the interactions between water molecules and the confining walls play a key role in the structure and transport properties of water confined in the CNTs.  相似文献   

8.
Quasielastic neutron scattering (QENS) spectra of water-filled MCM-41 samples (pore diameters: 21.4 and 28.4 Angstrom) were measured over the temperature range 238-298 K and the momentum transfer range 0.31-0.99 A(-1) to investigate the dynamics of confined water molecules. The spectra, which consist mainly of contributions from the translational diffusion of water molecules, were analyzed by using the Lorentzian and the stretched exponential functions. Comparison of the fits indicated that the latter analysis is more reliable than the former one. The fraction of immobile water molecules located in the vicinity of the pore walls, which give an elastic component, was found to be 0.044-0.061 in both pores. The stretch exponent beta was determined as 0.66-0.80. It was shown that the translational diffusion of water molecules in the pores is decelerated by confinement and that the deceleration becomes marked with a decrease in pore size. The ratios of the translational diffusion coefficient D(T) of confined water to that of bulk water at room temperature were within a range of 0.47-0.63.  相似文献   

9.
Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius.  相似文献   

10.
In our previous paper (J. Phys. Chem. B 2005, 109, 757) it was illustrated that the 129Xe NMR spectra of xenon dissolved in acetonitrile confined into mesoporous materials give detailed information on the system, especially about the pore sizes. A resonance signal originating from xenon atoms sited in very small cavities built up inside the pores during the freezing transition (referred to as signal D) turned out to be highly sensitive to the pore size. The emergence of this signal reveals the phase transition temperature of acetonitrile inside the pores, which can also be used to determine the size of the pores. In addition, the difference in the chemical shifts of two other signals arising from xenon dissolved in bulk and confined acetonitrile (B and C) provides another method for determining the pore sizes. In the present work, the observed correlations have been investigated using an extensive set of measurements with a variety of porous materials (silica gels and controlled pore glasses) with the mean pore diameters ranging from 43 to 2917 A. The usefulness of the correlations has been demonstrated by calculating the pore size distributions from the spectral data. The distributions are in agreement with those reported by the manufacturers, when the mean pore diameter is smaller than approximately 500 A. In addition, it has been shown that the porosity of the materials can be determined by comparing the intensities of the signals arising from the bulk and confined liquid. When acetonitrile is replaced by cyclohexane in the sample, the dependence of the chemical shift difference between the B and C signals on the pore size becomes more sensitive, but no D signal appears below the freezing point. In addition, the influence of xenon gas on the melting points of bulk and confined acetonitrile has been studied by 1H NMR cryoporometry. The measurements show that the temperature of the latter transition lowers slightly more, and consequently affects the pore sizes calculated by means of the difference in the phase transition temperatures. Hysteresis in the phase transitions in a cooling-warming cycle has also been studied as a function of the temperature stabilization time by 129Xe NMR of xenon dissolved in acetonitrile.  相似文献   

11.
The local density around pyridazine was evaluated by examining the UV-vis spectral shift of pyridazine in a high-pressure liquid state and supercritical water from 25 to 450 degrees C and from 20 to 45 MPa. Augmentation of the local density was observed from 380 to 420 degrees C, and showed the maximum at a lower density than the critical density of water. The degree of hydrogen bonding was estimated in consideration of the local density augmentation. The estimated degree of hydrogen bonding under subcritical conditions without any difference between the local density and the bulk density corresponded to the previously reported results with a UV-vis absorbance spectral shift of quinoline and an NMR proton chemical shift. However, the degree of hydrogen bonding near the critical point of water was larger than that in the case that the local density augmentation was not taken into account. At 380 degrees C and 0.2 g cm(-3) of the bulk density there are 30% as many hydrogen bonds as those under the ambient condition, and it was around 1.5-times that without considering local-density augmentation.  相似文献   

12.
Reaction kinetics measurements of the water-gas shift reaction were carried out at 373 K on Pt/Al2O3 in vapor phase to investigate the effects of CO, H2, and H2O partial pressures. Results of in situ ATR-IR studies conducted in vapor phase under similar conditions suggest that the Pt surface coverage by adsorbed CO is high (approximately 90% of the saturation coverage), leading to a negligible effect of the CO pressures on the rate of reaction. The negative reaction order with respect to the H2 pressure is caused by the increased coverage of adsorbed H atoms, and the fractional positive order with respect to the water pressure is consistent with non-equilibrated H2O dissociation on Pt. Results of in situ ATR-IR studies carried out at 373 K show that the presence of liquid water leads to a slight decrease in the Pt surface coverage by adsorbed CO (approximately 80% of the saturation coverage) when the CO partial pressure is the same as in the vapor-phase studies. The rate of the WGS reaction in the presence of liquid water is comparable to the rate under complete vaporization conditions when other factors (such as CO partial pressure) are held constant. Reaction kinetics measurements of methanol reforming were carried out at 423 K over a total pressure range of 1.36-5.84 bar. In situ ATR-IR studies were conducted at 423 K to determine the Pt surface coverage by adsorbed CO in completely vaporized methanol feeds and in aqueous methanol solutions. The decomposition of methanol is found to be slower during the reforming of methanol in liquid phase than in vapor phase, which leads to a lower rate of hydrogen production in liquid phase (0.08 min(-1) at 4.88 bar) than in vapor phase (0.23 min(-1) at 4.46 bar). The lower reaction order with respect to methanol concentration observed for vapor-phase versus liquid-phase methanol reforming (0.2 versus 0.8, respectively) is due to the higher extent of CO poisoning on Pt for reforming in vapor phase than in liquid phase, based on the higher coverage by adsorbed CO observed in completely vaporized methanol feeds (55-60% of the saturation coverage) than in aqueous methanol feed solutions (29-40% of the saturation coverage).  相似文献   

13.
Second harmonic generation (SHG), a surface specific, nonlinear optical spectroscopy, was used to study the interfacial solvation of a neutral surfactant, p-nitrophenol (PNP), adsorbed to the water/cyclohexane interface in the presence of simple salts at varying salt concentrations. The purpose of this work was to determine what relationship (if any) exists between interfacial polarity and bulk solution ionic strength. Data show an apparent red shift in SHG spectra with an increase in salt anion size from fluoride to chloride to bromide at 1 M salt concentrations. A spectral red shift of the PNP electronic excitation implies an increase in local polarity. Within experimental limits, however, these observed interfacial spectral shifts mimic shifts in absorbance spectra observed for PNP in bulk electrolyte solutions. Given the similarities between bulk and surface behavior, we conclude that observed shifts in SHG spectra may be attributed to effects similar to those found in bulk solution. Additionally, the surface adsorption of PNP to the water/cyclohexane interface was studied to determine the surface distribution of PNP and the conjugate base, p-nitrophenoxide (PNP(-)), for a 10 mM PNP solution. PNP adsorption is favored over PNP(-) adsorption by a factor of 10, giving rise to an equilibrium surface distribution that is an order of magnitude greater than that found in bulk solution. These findings indicate that the amount of PNP(-) at the surface in an aqueous solution of 10 mM PNP is negligible.  相似文献   

14.
The behavior of thermotropic nematic liquid crystals (LCs) Merck Phase 4 and ZLI 1115 confined to mesoporous controlled pore glass materials was investigated using 13C nuclear magnetic resonance spectroscopy of probe molecules methyl iodide and methane. The average pore diameters of the materials varied from 81 to 375 A, and the temperature series measurements were performed on solid, nematic, and isotropic phases of bulk LCs. Chemical shift, intensity, and line shape of the resonance signals in the spectra contain lots of information about the effect of confinement on the state of the LCs. The line shape of the 13C resonances of the CH3I molecules in LCs confined into the pores was observed to be even more sensitive to the LC orientation distribution than, for example, that of 2H spectra of deuterated LCs or 129Xe spectra of dissolved xenon gas. The effect of the magnetic field on the orientation of LC molecules inside the pores was examined in four different magnetic fields varying from 4.70 to 11.74 T. The magnetic field was found to have significant effect on the orientation of LC molecules in the largest pores and close to the nematic-isotropic phase transition temperature. The theoretical model of shielding of noble gases dissolved in LCs based on pairwise additivity approximation was utilized in the analysis of CH4 spectra. For the first time, a first-order nematic-isotropic phase transition was detected to take place inside such restrictive hosts. In the larger pores a few degrees below the nematic-isotropic phase transition of bulk LC the 13C quartet of CH3I changes as a powder pattern. Results are compared to those derived from 129Xe NMR measurements of xenon gas in similar environments.  相似文献   

15.
Small angle neutron scattering (SANS) is used to measure the absolute density of water contained in 1-D cylindrical pores of a silica material MCM-41-S with pore diameters of 19 and 15 A. By being able to suppress the homogeneous nucleation process inside the narrow pore, one can keep water in the liquid state down to at least 160 K. From a combined analysis of SANS data from both H(2)O and D(2)O hydrated samples, we determined the absolute value of the density of 1-D confined water. We found that the average density of water inside the fully hydrated 19 A pore is 8% higher than that of the bulk water at room temperature. The temperature derivative of the density shows a pronounced peak at T(L) = 235 K signaling the crossing of the Widom line at ambient pressure and confirming the existence of a liquid-liquid phase transition at an elevated pressure. Pore size and hydration level dependences of the density are also studied.  相似文献   

16.
In this work, extensive lattice Monte Carlo simulations were performed to investigate the influence of confinement on critical micelle concentration (CMC). It is found that the CMC of surfactants in a confined space is shifted from its bulk value, and the shift is affected by the presence of the confining boundaries, which induces both the finite size effect and the wall-surfactant interaction. In general, for strongly confined system (the system with narrow pore size), the finite size effect dominates the CMC shift because the confined space cannot accommodate fully developed micelles, and the rapid increase of the entropic loss due to the decrease of the pore size results in the rapid increase of CMC. In contrast, for a weakly confined space, the CMC shift depends on the interaction between the walls and surfactants. For the systems with two weakly hydrophilic surfaces, the local density depletion of the surfactants near the walls results in lower CMCs than the bulk value, and the CMC shifts to a higher value as the pore size increases. For the systems with moderately hydrophilic surfaces, the shifts of CMCs show a similar behavior as those for weakly hydrophilic surfaces, but the CMCs are near their bulk values in the range of weak confinement. For the systems with strongly attractive wall-surfactant interactions, the strong adsorption also results in lower CMCs than their bulk value, but the CMCs decrease with the increase of pore size.  相似文献   

17.
Broadband dielectric spectroscopy (10(2)-1.9 x 10(9) Hz) and specific heat measurements have been performed on nonyloxycyanobiphenyl (9OCB) in the isotropic (I), nematic (N), and smectic A (SmA) phases confined to 200 nm diameter parallel cylindrical pores of Anopore membranes. Untreated and HTBA-treated membranes have been found to obtain axial and radial confinements, respectively. However, structural or configurational transitions in untreated membranes have been reported to exist in the SmA-mesophase of 9OCB. Both confinements clearly affect the N-I and SmA-N phase transitions. In the axial confinement, the analysis of the specific heat and static dielectric permittivity data leads to a second order SmA-N phase transition, which is known to be weakly first order for bulk 9OCB. Dynamic dielectric measurements have accounted for the different molecular motions in both confinements. On both mesophases, either N or SmA, the relaxation processes in axial configuration are faster than in the bulk. However, in radial confinement, they are either equal or slower than in the bulk. Additionally, there are no differences in the energy barrier hindering the molecular motions between the axial and radial confinements and even in relation to bulk. Likewise, dielectric results suggest that the extension inside the pores of the surface pinned molecular layer (proved to be temperature-dependent) persists at high enough temperature as a residual-thin layer adjacent to the pore wall.  相似文献   

18.
The water inside reverse micelles can differ dramatically from bulk water. Some changes in properties can be attributed to the interaction of water molecules with the micellar interface, forming a layer of shell water inside the reverse micelle. The work reported here monitors changes in intramicellar water through chemical shifts and signal line widths in 51V NMR spectra of a large polyoxometalate probe, decavanadate, and from infrared spectroscopy of isotopically labeled water, to obtain information on the water in the water pool in AOT reverse micelles formed in isooctane. The studies reveal several things about the reverse micellar water pool. First, in agreement with our previous measurements, the proton equilibrium of the decavanadate solubilized within the reverse micelles differs from that in bulk aqueous solution, indicating a more basic environment compared to the starting stock solutions from which the reverse micelles were formed. Below a certain size, reverse micelles do not form when the polyoxometalate is present; this indicates that the polyanionic probe requires a layer of water to solvate it in addition to the water that solvates the surfactant headgroups. Finally, the polyoxometalate probe appears to perturb the water hydrogen-bonding network in a fashion similar to that in the interior surface of the reverse micelles. These measurements demonstrate the dramatic differences possible for water environments in confined spaces.  相似文献   

19.
Frequency‐dependent NMR relaxation studies have been carried out on water (polar) and cyclohexane (nonpolar) molecules confined inside porous ceramics containing variable amounts of iron oxide (III). The porous ceramics were prepared by compression of powders mixed with iron oxide followed by thermal treatment. The pore size distribution was estimated using a technique based on diffusion in internal fields that exposed a narrow distribution of macropore sizes with an average pore dimension independent of iron oxide content. The relaxation dispersion curves were obtained at room temperature using a fast field cycling NMR instrument. They display an increase of the relaxation rate proportional to the iron oxide concentration. This behavior is more prominent at low Larmor frequencies and is independent of the polar character of the confined molecules. The results reported here can be fitted well with a relaxation model considering exchange between molecules in the close vicinity of the paramagnetic centers located in the surface and bulk‐like molecules inside the pores. This model allows the extraction of the transverse diffusional correlation time that can be related to the polar character of the confined molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The local hydrogen-bonding environment of water confined in glycolipid nanotubes (LNTs) was investigated by Fourier transform infrared (FT-IR) spectroscopy. Using X-ray diffraction (XRD), we estimated the thickness of an interlamellar water layer, which was confined between the bilayer membranes constructing the walls of the LNTs, to be 1.3 +/- 0.3 nm. FT-IR spectroscopic measurement of the confined water showed an obvious reduction in IR absorption in both the low-energy (around 3000 cm(-1)) and high-energy regions (around 3600 cm(-1)) of the OH stretching band as compared to bulk water. The reduction around 3000 cm(-1) indicated a decrease in the relative proportion of the water molecules with a long-range network structure due to a geometrical restriction. This agrees with the results obtained for other multilamellar systems. On the other hand, the remarkable reduction around 3600 cm(-1), which was not observed in the other systems, indicated the absence of weakly hydrogen-bonded water aggregates due to the effect of sugar headgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号