首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Various surface species originating from the reaction between CO2 and H2 over Al2O3-supported Pt, Pd, Rh, and Ru model catalysts were investigated by attenuated total reflection infrared (ATR-IR) spectroscopy under high-pressure conditions. Two different spectroscopic cells were used: a variable-volume view cell equipped with ATR-crystal and transmission IR windows (batch reactor) and a continuous-flow cell also equipped with a reflection element for ATR-IR spectroscopy. The study corroborated that CO formation from dense CO2 in the presence of hydrogen occurs over all Pt-group metals commonly used in heterogeneous catalytic hydrogenations in supercritical CO2 (scCO2). In the batch reactor cell, formation of CO was detected on all metals at 50 and 90 degrees C, with the highest rate on Pt. Additional surface species were observed on Pt/Al2O3 at 150 bar under static conditions. It seems that further reaction of CO with hydrogen is facilitated by the higher surface concentration at higher pressure. In the continuous-flow cell, CO coverage on Pt/Al2O3 was less prominent than that in the batch reactor cell. A transient experiment in the continuous-flow cell additionally revealed CO formation on Pt/Al2O3 at 120 bar after switching the feed from a H2-ethane to a H2-CO2 mixture. The in situ ATR-IR measurements indicate that CO formation in CO2-H2 mixtures is normally a minor side reaction during hydrogenation reactions on Pt-group metal catalysts, and dense ("supercritical") CO2 may be considered as a relatively "inert" solvent in many practical applications. However, blocking of specific sites on the metal surface by CO and consecutive products can affect structure sensitive hydrogenation reactions and may be at the origin of unexpected shifts in the product distribution.  相似文献   

2.
The palladium-catalyzed liquid-phase reaction of benzyl alcohol to benzaldehyde was investigated in the presence and absence of oxygen by attenuated total reflection infrared (ATR-IR) spectroscopy. The 5 wt % Pd/Al2O3 catalyst was fixed in a flow-through ATR-IR cell serving as a continuous-flow reactor. The reaction conditions (cyclohexane solvent, 323 K, 1 bar) were set in the range commonly applied in the heterogeneous catalytic aerobic oxidation of alcohols. The in situ ATR-IR study of the solid-liquid interface revealed a complex reaction network, including dehydrogenation of benzyl alcohol to benzaldehyde, decarbonylation of benzaldehyde, oxidation of hydrogen and CO on Pd, and formation of benzoic acid catalyzed by both Pd and Al2O3. Continuous formation of CO and its oxidative removal by air resulted in significant steady-state CO coverage of Pd during oxidation of benzyl alcohol. Unexpectedly, benzoic acid formed already in the early stage of the reaction and adsorbed strongly (irreversibly) on the basic sites of Al2O3 and thus remained undetectable in the effluent. This observation questions the reliability of product distributions conventionally determined from the liquid phase. The occurrence of the hydrogenolysis of the C-O bond of benzyl alcohol and formation of toluene indicates that Pd was present in a reduced state (Pd0) even in the presence of oxygen, in agreement with the dehydrogenation mechanism of alcohol oxidation.  相似文献   

3.
The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor. It is assumed that the CO absorption bands on atomically smoother surfaces appear at lower frequencies and that water molecules are adsorbed more preferentially on atomically rough surfaces rather than CO species.  相似文献   

4.
The isotopic exchange of CO adsorbed on Pt(111) was studied using polarization modulation IR reflection absorption spectroscopy (PM-IRRAS) and temperature programmed desorption. It was found that the rate constants for the exchange reaction are much higher than would be expected from previous investigations of CO adsorbed on Pt nanoparticles. The adsorption of CO on Pt(111) under elevated pressures of CO and H(2) was also studied using PM-IRRAS. It was seen that CO pressures above 1 mbar lead to a shift in the absorption peak arising from CO adsorbed on a bridge site from 1850 to 1875 cm(-1). Exposing the CO-covered Pt(111) surface to 1000 mbar H(2) did not lead to any significant desorption of CO at room temperature, whereas at 363 K H(2) exposure did lead to a significant desorption of CO, due to the increased chemical potential of H(2). In a mixture of CO and H(2) with partial pressures of 0.01 mbar and 1000 mbar, respectively, no significant effect of H(2) on the PM-IRRAS spectrum was seen at temperatures below 423 K.  相似文献   

5.
With a variety of surface probe techniques, we investigated low-temperature decomposition of methanol on Au nanoclusters formed by vapor deposition onto an ordered Al(2)O(3)/NiAl(100) thin film. Upon adsorption of methanol on the Au clusters (with mean diameter 1.5-3.8 nm and height 0.45-0.85 nm) at 110 K, some of the adsorbed methanol dehydrogenates directly into carbon monoxide (CO); the produced hydrogen atoms (H) begin to desorb near 125 K whereas most of the CO desorbs above 240 K. The reaction exhibits a significant dependence on the Au coverage: the produced CO increases in quantity with the Au coverage, reaches a maximum at about 1.0-1.5 ML Au, whereas decreases with further increase of the Au coverage. The coverage-dependence is rationalized partly by an altered number of reactive sites associated with low-coordinated Au in the clusters. At least two kinds of reactive sites for the low-temperature decomposition are distinguished through distinct C-O stretching frequencies (2050 cm(-1) and 2092 cm(-1)) while the produced CO co-adsorbs with H and methanol.  相似文献   

6.
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

7.
CuO-ZnO-ZrO2催化甲醇水蒸汽重整反应机理和中间态   总被引:1,自引:0,他引:1  
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

8.
Electrochemical measurements were performed to characterize the kinetics of adsorbed CO oxidation on the surface of the stepped Pt(s)-[4(111)x(100)][triple bond, length half m-dash]Pt(335) single crystal electrode. For CO adsorbed to full coverage at 0.1 V (versus the reversible hydrogen electrode, RHE) in 0.5 M H(2)SO(4) at ambient temperature (23 degrees C), oxidation of the layer gave 7.6 x 10(14) +/- 0.3 CO/cm(2) as the saturation CO coverage, just below the average value reported for CO on Pt(335) in ultra high vacuum (8.3 x 10(14) +/- 0.6 CO/cm(2)). In potential step measurements carried out between 0.75 and 0.9 V, the peak region in the current-time transient was consistent with the surface reaction between adsorbed CO and adsorbed oxide as rate limiting. Plotting the log of the rate constant for the surface reaction versus potential gave a Tafel slope of 79 mV per decade, consistent with responses for CO electrochemical oxidation on structurally related stepped Pt electrodes. For CO coverages below saturation, current-time transients were more stable in 0.05 M H(2)SO(4) than in the higher concentration electrolyte. Numerically solving the rate equations to the Langmuir-Hinshelwood model of adsorbed CO electrochemical oxidation reproduced the main features in current-time transients measured at 0.7 V in 0.05 M H(2)SO(4) for sub-saturation CO coverages. The results provide new insights into CO oxidation on Pt at sub-saturation coverage and confirm that anions play a role in CO surface chemistry.  相似文献   

9.
A technique that measures the effective density of a zeolite after adsorption from the liquid phase was developed to measure the absolute amounts of liquid mixtures adsorbed on zeolites without using a nonadsorbing solvent. Since the fugacities of the adsorbing components in solution can be dramatically different with or without the addition of a nonadsorbing solvent, this technique measures mixture isotherms that can be used for analyzing pervaporation through zeolite membranes. A nonideal solution, methanol/acetone, was used as an example to show that its adsorption isotherms on silicalite-1 zeolite at 294 K differ dramatically from those measured with the nonadsorbing solvent method. The methanol/acetone fugacity ratio is different for the two methods because of different concentrations in the liquid phase. Methanol preferentially adsorbs on silicalite-1 at low methanol concentrations and acetone preferentially adsorbs at high methanol concentrations. The density bottle method was used to show that n-hexane preferentially adsorbs from n-hexane/3-methylpentane liquid mixtures, and at high n-hexane concentrations, essentially no 3-methylpentane adsorbs, as has been predicted previously by simulations. A larger molecule, 2,2-dimethylbutane, adsorbed so slowly at 294 K that silicalite had only 16% of saturation coverage after 370 h, but it was saturated after 1650 h; at 423 K, saturation was obtained in less than 24 h.  相似文献   

10.
Adsorption of carbon monoxide and oxidation of preadsorbed carbon monoxide from gas and aqueous phases were studied on a platinum catalyst deposited on a ZnSe internal reflection element (IRE) using attenuated total reflection infrared (ATR-IR) spectroscopy. The results of this study convincingly show that it is possible to prepare platinum metal layers strongly attached to an IRE, which are stable for over 3 days in aqueous-phase experiments. It is shown that ATR-IR spectroscopy is a suitable technique to study adsorption and catalytic reactions occurring at the interface of a solid catalyst in an aqueous reaction mixture, even with an extreme low-surface-area catalyst. Clearly, ATR-IR spectroscopy allows for a direct comparison of reactions on a catalytic surface in gas and liquid phases on the same sample. CO was found to adsorb both linearly and bridged on the platinum metal layer when adsorbed from the gas phase, but only linear CO was detected in aqueous solution, although with 5 times higher intensity. Oxidation of preadsorbed CO on platinum occurs in both gas phase, wetted gas, and aqueous media and was found to be 2 times faster in the aqueous phase compared to gas-phase oxidation because of a promoting effect of water. Moreover, during oxidation at room temperature, CO2 adsorbed on Pt/ZnSe was detected in both gas and aqueous phases.  相似文献   

11.
Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces whose properties were altered by variation of the Pd and Pt film thickness from 0.2 to 2 nm. Because no CO adsorption was observed on Au, the evaporation of Pt-group metals on Au allowed us to study the effect of dilution on the adsorption properties of the surfaces. At equivalent Pd film thickness, the evaporation of Au reduced the amount of adsorbed CO and caused the formation of 2-fold bridging CO, which was almost absent in monometallic surfaces. Additionally, the average particle size on Pd-Au surfaces was smaller than that on monometallic Pd surfaces. The results indicate that a Pd/Au diffuse interface is formed that affects the Pd particle size even more drastically than the simple decrease in Pd film thickness in monometallic surfaces. Pt-Au surfaces were less sensitive to CO adsorption, indicating that the two metals do not mix to a significant extent. The difference in the interfacial behavior of Pd and Pt in the bimetallic gold films is traced to the largely different Pd-Au and Pt-Au miscibility gaps.  相似文献   

12.
The adsorption and degradation of the nerve agent simulant dimethyl methylphosphonate (DMMP) over UV-irradiated TiO(2) powders and thin films has been investigated. Adsorption of vapor-phase DMMP on TiO(2) powder is characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Photochemically assisted oxidation of adsorbed DMMP is carried out in situ by irradiation of samples in the DRIFTS accessory, giving kinetic data and information on specific site binding of DMMP and catalyst poisoning. Gas-phase intermediates from a static vapor phase reaction are identified by gas chromatography-mass spectrometry analysis, and surface-bound intermediates and products are analyzed by high-performance liquid chromatography-mass spectrometry, and ion chromatography of both aqueous and organic extractions from the TiO(2). Adsorbed DMMP is photodegraded in a stepwise fashion to give methylphosphonic acid, PO(4)(3-), H(2)O, and CO(2) as products. A proposed reaction pathway is consistent with a rapid degradation of DMMP but with extensive poisoning of the catalyst by surface-bound phosphonate products.  相似文献   

13.
CoPt nanoparticles supported on a glassy carbon electrode (denoted as CoPt/GC) were prepared by galvanic replacement reaction between electrodeposited Co nanoparticles and K(2)PtCl(6) solution. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were both employed to characterize the CoPt nanoparticles. It was shown that the CoPt nanoparticles have irregular shapes and most of them exhibit a core-shell structure with a porous Co core and a shell of Pt tiny particles. The composition of the CoPt nanoparticles was analyzed by energy-dispersive X-ray spectroscopy (EDX), which depicts a Co : Pt ratio of ca. 21 : 79. Studies of cyclic voltammetry (CV) demonstrated that CoPt/GC possesses a much higher catalytic activity towards CO and methanol electrooxidation than a nanoscale Pt thin film electrode. In situ FTIR spectroscopic studies have revealed for the first time, that a CoPt nanoparticles electrode exhibits abnormal IR effects (AIREs) for IR absorption of CO adsorbed on it. In comparison with the IR features of CO adsorbed on a bulk Pt electrode, the direction of the IR bands of CO adsorbed on the CoPt/GC electrode is inverted completely, and the intensity of the IR bands has been enhanced up to 15.4 times. The AIREs is significant in detecting the adsorbed intermediate species involved in electrocatalytic reactions. The results demonstrated a reaction mechanism of CH(3)OH oxidation on CoPt/GC in alkaline solutions through evidencing CO(L), CO(M), HCOO(-), CO(3)(2-), HCO(3)(-) and CO(2) as intermediate and product species by in situ FTIRS.  相似文献   

14.
Electrocatalytic oxidation of carbon monoxide and methanol at Pt nanoparticles confined in mesoporous molecular sieve SBA-15 was studied by using cyclic voltammetry and in situ FTIR spectroscopy. Cyclic voltammetric studies revealed that the Pt nanoparticles confined in SBA-15 exhibit a high activity in the presence of hydrated phase consisting of SiO2 in the SBA-15. In situ FTIR spectroscopy results discovered that IR absorption of CO adsorbed on Pt nanoparticles confined in SBA-15 has been enhanced 11-fold, and the full-width at half-maximum of the CO band is significantly increased, in comparison with IR feature of CO adsorbed on a bulk Pt electrode. The linearly adsorbed CO species is the only intermediate derived from dissociative adsorption of methanol, which is more readily oxidized to form CO2 in the aid of the active oxide in SBA-15.This paper is dedicated to Professor G. Horanyi on the occasion of his 70th birthday and in recognition of his outstanding contribution to electrochemistry  相似文献   

15.
IR spectroscopy has been an important tool for studying detailed interactions of reactants and reaction-intermediates with catalyst surfaces. Studying reactions in water is, however, far from trivial, due to the excessive absorption of infrared light by water. One way to deal with this is the use of Attenuated Total Reflection spectroscopy (ATR-IR) minimizing the path length of infrared light through the water. Moreover, ATR-IR allows for a direct comparison of reactions in gas and water on the same sample, which bridges the gap between separate catalyst investigations in gas and liquid phase. This tutorial review describes recent progress in using ATR-IR for studying heterogeneous catalysts in water. An overview is given of the important aspects to be taken into account when using ATR-IR to study heterogeneous catalysts in liquid phase, like the procedure to prepare stable catalyst layers on the internal reflection element. As a case study, CO adsorption and oxidation on noble metal catalysts is investigated with ATR-IR in gas and water. The results show a large effect of water and pH on the adsorption and oxidation of CO on Pt/Al(2)O(3) and Pd/Al(2)O(3). From the results it is concluded that water affects the metal particle potential as well as the adsorbed CO molecule directly, resulting in higher oxidation rates in water compared to gas phase. Moreover, also pH influences the metal particle potential with a clear effect on the observed oxidation rates. Finally, the future outlook illustrates that ATR-IR spectroscopy holds great promise in the field of liquid phase heterogeneous catalysis.  相似文献   

16.
Modification of 5 wt% Pt/Al(2)O(3) by Bi (0.9 wt%) affords a drastic improvement of catalytic activity in the liquid phase aerobic oxidation of benzyl alcohol. The nature of the solvent employed, cyclohexane or toluene, seems to influence the catalytic activity as well. We have investigated the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic activity of the metallic Pt sites for a longer period of time. Interestingly, toluene contrary to cyclohexane reduced Pt to a large extent. The freshly reduced noble metal sites seem to directly interact with the solvent, inducing an immediate poisoning of the material and limiting its performance. This behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur also on sites other than the (111) terraces.  相似文献   

17.
We report the first direct measurement of CO diffusion on nanoparticle Pt electrocatalysts at the solid/liquid interface, carried out using 13C nuclear magnetic resonance (NMR) with a spin-labeling pulse sequence. Diffusion parameters were measured in the temperature range of 253-293 K for CO adsorbed on commercial Pt-black under saturation coverage. 2H NMR of the same system indicates that the electrolyte remains in the liquid state at temperatures where the CO diffusion experiments were performed. The CO diffusion parameters follow typical Arrhenius behavior with an activation energy of 6.0 +/- 0.4 kcal/mol and a pre-exponential factor of (1.1 +/- 0.6) x 10-8 cm2/s. Exchange between different CO populations, driven by a chemical potential gradient, is suggested to be the main mechanism for CO diffusion. The presence of the electrolyte medium considerably slows down the diffusion of CO as compared to that seen on surfaces of bulk metals under UHV conditions. This work opens up a new approach to the study of surface diffusion of adsorbed molecules on nanoparticle electrode catalysts, including the possibility of correlating diffusion parameters to catalytic activity in real world applications of broad general interest.  相似文献   

18.
Methanol adsorption and reaction have been studied on Rh-deposited cerium oxide thin films under UHV conditions using temperature-programmed desorption and synchrotron soft X-ray photoelectron spectroscopy. The methanol behavior was examined as a function of the Ce oxidation state, methanol exposure, and Rh particle size and coverage. When Rh nanoparticles were deposited on the ceria films, methanol decomposed on Rh to CO and H below 200 K. H atoms recombined and desorbed between 200 and 300 K. CO evolved from Rh deposited on fully oxidized ceria between 400 and 500 K. However, on reduced ceria films, the CO on Rh further decomposed to atomic C. Methanol adsorbed on the ceria films deprotonated to form methoxy as the only intermediate on the surface. This methoxy decomposed and desorbed as CO and H2 at higher temperatures regardless of the ceria oxidation state. Compared with the methanol reaction on Rh-free ceria thin films, formaldehyde formation from methoxy was completely suppressed after Rh deposition. Our results indicate that Rh can promote the decomposition of methoxy adsorbed on the ceria and that decomposition of methoxy intermediates occurred at the metal/oxide interfaces. On the other hand, the reduced ceria can promote total methanol decomposition on Rh.  相似文献   

19.
We demonstrate that the (local) adsorbed carbon monoxide, COad, coverage on the Pt-free areas of bimetallic Pt/Ru(0001) surfaces (a Ru(0001) substrate partly covered by Pt monolayer islands) can be increased to ∼0.80 monolayers (ML), well above the established saturation COad coverage of 0.68 ML, even under ultrahigh vacuum conditions by using spill-over of CO adsorbed on the Pt islands to the Ru areas as an highly effective adsorption channel. The apparent COad saturation coverage of 0.68 ML on pure Ru(0001) is identified as due to kinetic limitations, hindering further uptake from the gas phase, rather than being caused by thermodynamic reasons. This spill-over mechanism is proposed to be a general phenomenon for adsorption on bimetallic surfaces.  相似文献   

20.
在室温下以太阳能替代传统的高温高压热反应条件,在固定床装置中实现连续动态光催化甲烷重整水气(PSRM)制氢反应:CH4+2H2O(g)→4H2+CO2. 产物的主成分是H2和CO2,同时检测到微量或痕量的C2H6、C2H4和CO. 重点考察了以光沉积法负载Pt的TiO2(p-Pt/TiO2)为光催化剂,该反应体系在不同CH4/H2O进料摩尔比、进料的总流速、光照波长、催化剂用量以及贵金属的负载方式等的实验条件对氢气产率的影响. 最优化的反应条件为:CH4/H2O进料摩尔比为4; 进料总流速为0.5 mL.min-1; 光沉积负载要优于浸渍法; 相同的负载方式Pd和NiOx为比较优异的助催化剂; 最佳催化剂用量为20 mg.cm-2. 最后循环实验结果表明,p-Pt/TiO2及反应体系都具有比较高的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号