首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Chebyshev tau method is examined; a numerical technique which in recent years has been successfully applied to many hydrodynamic stability problems. The orthogonality of Chebyshev functions is used to rewrite the differential equations as a generalized eigenvalue problem. Although a very efficient technique, the occurrence of spurious eigenvalues, which are not always easy to identify, may lead one to believe that a system is unstable when it is not. Thus, the elimination of spurious eigenvalues is of great importance. Boundary conditions are included as rows in the matrices of the generalized eigenvalue problem and these have been observed to be one cause of spurious eigenvalues. Removing boundary condition rows can be difficult. This problem is addressed here, in application to the Bénard convection problem, and to the Orr-Sommerfeld equation which describes parallel flow. The procedure given here can be applied to a wide range of hydrodynamic stability problems.Received: 4 July 2002, Accepted: 13 September 2002, Published online: 27 June 2003  相似文献   

2.
提出多自由度周期参激系统稳定性的数值直接法。通过将扰动方程表示成状态方程形式,再根据Flo-quet理论将扰动解表示成指数特征分量与周期分量之积,并将其周期分量与系统周期系数展成Fourier级数,导出一系列代数方程,建立矩阵特征值问题,从而由数值求解特征值可直接确定参激系统的稳定性。该方法可用于一般周期参激阻尼系统,特征值矩阵不含逆子阵。应用于斜拉索在支座周期运动激励下的参激振动不稳定性分析,数值结果表明该方法的有效性。  相似文献   

3.
EIGENVALUE PROBLEM OF A LARGE SCALE INDEFINITE GYROSCOPIC DYNAMIC SYSTEM   总被引:3,自引:0,他引:3  
Gyroscopic dynamic system can be introduced to Hamiltonian system.Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gy- roscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system.The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used.The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented,and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem.Therefore,the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved,and two numerical examples were given to demonstrate that the eigensolutions converge exactly.  相似文献   

4.
Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory (RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequency for a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.  相似文献   

5.
Consideration is devoted to traveling N-front wave solutions of the FitzHugh–Nagumo equations of the bistable type. Especially, stability of the N-front wave is proven. In the proof, the eigenvalue problem for the N-front wave bifurcating from coexisting simple front and back waves is regarded as a bifurcation problem for projectivised eigenvalue equations, and a topological index is employed to detect eigenvalues.  相似文献   

6.
有界参数结构特征值的上下界定理   总被引:6,自引:1,他引:6  
与方法近似性的结构特征值包含定理不同,给出参数近似性的结构的特征值上下界定理.在结构刚度矩阵和质量矩阵可以利用结构参数进行非员分解的条件下,通过区间分析,将特征值的上下界分解成两个广义特征值问题进行求解.结果可以看成是胡海昌教授的特征值质量包含定理和刚度包含定理在结构参数近似性特征值问题中的一种推广和应用.  相似文献   

7.
代替传统的处理不确定问题的概率统计方法,将利用区问数学和凸模型理论研究具有有界不确定参数的非比例阻尼结构复特征值所在区域问题.区间数学将有界不确定结构参数用超长方体即区问向量进行定量化,而凸模型理论则用椭球对有界不确定参数进行定量化.在不用知道不确定变量的概率统计特性的条件下,区间分析方法和凸模型理论都可以确定出有界不确定结构参数的非比例阻尼结构复特征值所在区域.通过数学证明和数值算例来说明,在凸模型理论中的椭球在由区间分析中的超长方体—区间向量来确定的条件下,由区间数学所确定出不确定结构复特征值实部和虚部的宽度要比凸模型所确定出的范围的宽度要小,而这正是工程技术人员所要求的结果。  相似文献   

8.
A numerical continuation method for the compressible Reynolds‐Averaged Navier–Stokes equation with the Spalart–Allmaras turbulence model is presented and applied to the flow around a 2D airfoil. Using continuation methods it is possible to study the steady flow states of a system as a parameter such as angle of attack is varied. This approach allows unstable solutions to be calculated, which are important for understanding the nonlinear dynamics of the system. Furthermore, this method can be used to find any multivalued solutions that exist at a single parameter value. The eigenvalues of the system are calculated using the Cayley transform to precondition the eigenvalue solver ARPACK. The eigenvalues are important as they show the stability of the solutions as well as accurately detect parameter values at which bifurcations take place. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
《Comptes Rendus Mecanique》2017,345(12):844-867
In this paper, we characterize random eigenspaces with a non-intrusive method based on the decoupling of random eigenvalues from their corresponding random eigenvectors. This method allows us to estimate the first statistical moments of the random eigenvalues of the system with a reduced number of deterministic finite element computations. The originality of this work is to adapt the method used to estimate each random eigenvalue depending on a global accuracy requirement. This allows us to ensure a minimal computational cost. The stochastic model of the structure is thus reduced by exploiting specific properties of random eigenvectors associated with the random eigenfrequencies being sought. An indicator with no additional computation cost is proposed to identify when the method needs to be enhanced. Finally, a simple three-beam frame and an industrial structure illustrate the proposed approach.  相似文献   

10.
This paper presents an approach for determining the linear stability of steady states of partial differential equations (PDEs) on massively parallel computers. Linearizing the transient behavior around a steady state solution leads to an eigenvalue problem. The eigenvalues with the largest real part are calculated using Arnoldi's iteration driven by a novel implementation of the Cayley transformation. The Cayley transformation requires the solution of a linear system at each Arnoldi iteration. This is done iteratively so that the algorithm scales with problem size. A representative model problem of three‐dimensional incompressible flow and heat transfer in a rotating disk reactor is used to analyze the effect of algorithmic parameters on the performance of the eigenvalue algorithm. Successful calculations of leading eigenvalues for matrix systems of order up to 4 million were performed, identifying the critical Grashof number for a Hopf bifurcation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments are designed to validate the sufficient conditions. The results agree with the derived sufficient conditions.  相似文献   

12.
This paper discusses the problem of finding the eigenvalue spectrum in determining the stress and strain fields at the tip of an antiplane-shear crack in a power-law material. It is shown that the perturbation method provides an analytical dependence of the eigenvalue on the material nonlinearity parameter and the eigenvalue of the linear problem. Thus, it is possible to find the entire spectrum of eigenvalues and not only the eigenvalue of the Hutchinson-Rice-Rosengren problem. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 173–180, January–February, 2008.  相似文献   

13.
The absolute instability of boundary-layer flow over viscoelastic walls   总被引:1,自引:0,他引:1  
The linear stability of boundary-layer flow over a viscoelastic-layer wall is considered. A companion matrix technique is used to formulate the stability problem as a linear matrix eigenvalue problem for complex frequency and all the eigenvalues may be determined without any initial guess values. The eigenvalues are compared with those obtained with an accurate shooting method. The instability character of the boundary-layer flow is further investigated with the purpose of finding the conditions under which the instability of the flow could become absolute. The mapping technique of Kupferet al. (1987) is used to identify the occurrence of absolute instability eigenvalues. Absolute instabilities are discovered for cases of soft damped wall over certain ranges of Reynolds number. The effects of wall material stiffness, damping coefficient, thickness of layer, and Reynolds number on the occurrence of absolute instability are examined and presented.  相似文献   

14.
The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid. The order magnitudes of relevant physical parameters are analyzed qualitatively to establish a foundation on the further study of the model. The method of multiple scales is used to obtain eigenfunctions of the linear free-vibration modes of the pipe. The boundary conditions yield the characteristic equations from which eigenvalues can be derived. It is found that flow velocity in the pipe may induced the 3:1, 2:1 and 1:1 internal resonances between the first and second modes such that the mechanism of flow-induced internal resonances in the pipe under consideration is explained theoretically. The 3:1 internal resonance first occurs in the system and is, thus, the most important since it corresponds to the minimum critical velocity.  相似文献   

15.
The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid. The order magnitudes of relevant physical parameters are analyzed qualitatively to establish a foundation on the further study of the model. The method of multiple scales is used to obtain eigenfunctions of the linear free-vibration modes of the pipe. The boundary conditions yield the characteristic equations from which eigenvalues can be derived. It is found that flow velocity in the pipe may induced the 3:1, 2:1 and 1:1 internal resonances between the first and second modes such that the mechanism of flow-induced internal resonances in the pipe under consideration is explained theoretically. The 3:1 internal resonance first occurs in the system and is, thus, the most important since it corresponds to the minimum critical velocity.  相似文献   

16.
A general method is formulated to estimate damage location and extent from the explicit perturbation terms in specific set of eigenvectors and eigenvalues. At first, perturbed orthonormal equation is generated from the perturbation of eigenvectors and eigenvalues to obtain the k-th explicit perturbation coefficients. At second, perturbed eigenvalue equation is generated from the perturbation of eigenvector and eigenvalue, and first-order expansion of the stiffness matrix to obtain other explicit perturbation coefficients. Stiffness parameters are computed from these equations using an optimization method. The algorithm is iterative and terminates under certain criteria. A fixed–fixed modular beam with various numbers of elements is used as test structure to investigate the applicability of the developed approach. By comparison with the Euler–Bernoulli beam, discretization errors are analyzed. In six elements beam, first-order algorithm converges faster for small percentage damage. Second-order algorithm is more efficient for medium percentage damage. For large percentage damage, the second-order algorithm converges more effectively. Meanwhile, for eight elements large percentage damage and ten elements small percentage damage, second-order algorithm converges faster to the termination criterion.  相似文献   

17.
As to an autonomous nonlinear system, the stability of the equilibrium state in a sufficiently small neighborhood of the equilibrium state can be determined by eigenvalues of the linear part of the nonlinear system provided that the eigenvalues are not in a critical case. Many methods may be used to detect the stability for a linear system. A lot of researches for determining the stability of a nonlinear system are completed by mathematicians and mechanicians but most of them are methods for the special forms of nonlinear systems. Till now, none of these methods can be conveniently applied to all nonlinear systems. The method introduced by this paper gives the necessary and sufficient conditions of the stability of a nonlinear system. The familiar Krasovski's method is a special case of this method.  相似文献   

18.
The degeneration of the eigenvalue equation of the discrete-time linear quadraticcontrol problem to the continuous-time one when△t→0?is given first.When thecontinuous-time n-dimensional eigenvalue equation,which has all the eigenvalues located inthe left half plane,has been reduced from the original2n-dimensional one,the present paperproposes that several of the eigenvalues nearest to the imaginary axis be obtained by thematrix transformation A_e=e~A.All the eigenvalues of A_e are in the unit circle,with theeigenvectors unchanged and the original eigenvaiues can be obtained by a logarithmoperation.And several of the eigenvalues of A_e nearest to the unit circle can be calculated bythe dual subspace iteration method.  相似文献   

19.
数值流形方法及其在岩石力学中的应用   总被引:9,自引:0,他引:9  
李树忱  程玉民 《力学进展》2004,34(4):446-454
数值流形方法是目前岩石力学分析的主要方法之一.该方法起源于不连续变形分析,主要用于统一求解连续和非连续问题,其核心技术是在分析时采用了双重网格:数学网格提供的节点形成求解域的有限覆盖和权函数;而物理网格为求解的积分域.数学网格被用来建立数学覆盖,数学覆盖与物理网格的交集定义为物理覆盖,由物理覆盖的交集形成流形单元.流形方法的优点在于它使用了独立的数学和物理网格,具有和有限元明显不同的定义形式,且数学网格对于同一问题不同的求解精度的需求可以很方便地细化.由于该方法考虑了块体运动学,可以模拟节理岩体裂隙的开裂和闭合过程,因而在岩石力学中得到了广泛应用,近年来许多学者对该方法进行了研究.本文简要叙述了节理岩体的数值方法从连续到非连续的发展过程,详细地介绍了数值流形方法的组成和数值流形方法在岩石力学及其相关领域的研究和发展概况,最后就作者所关心的一些问题,如三维问题的数值流形方法、数值流形方法在物理非线性问题和裂纹扩展问题中的应用、相关的耦合方法等进行了探讨.   相似文献   

20.
This paper is concerned with the precise localization of Hopf bifurcations in various fluid flow problems. This is when a stationary solution loses stability and often becomes periodic in time. The difficulty is to determine the critical Reynolds number where a pair of eigenvalues of the Jacobian matrix crosses the imaginary axis. This requires the computation of the eigenvalues (or at least some of them) of a large matrix resulting from the discretization of the incompressible Navier–Stokes equations. We thus present a method allowing the computation of the smallest eigenvalues, from which we can extract the one with the smallest real part. From the imaginary part of the critical eigenvalue we can deduce the fundamental frequency of the time-periodic solution. These computations are then confirmed by direct simulation of the time-dependent Navier–Stokes equations. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号