首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zeolite NaA (LTA) membrane supported by an alumina porous support tube was characterized by Fourier Transform Infrared Attenuated Total Reflectance method (FTIR-ATR) with a diamond prism as the waveguide. A method using the FTIR-ATR was developed to estimate rapidly the EtOH/H2O pervaporation (PV) performance of the membrane. The Si-O asymmetric stretching vibration region of LTA membrane spectra synthesized hydrothermally on seeded alumina substrates showed a bimodal peak (830 - 1200 cm(-1)). The two peaks were assigned to a surface LTA directly derived from the seed crystal (1012 cm(-1)), and to LTA and/or amorphous substances embedded in the alumina porous support (930 cm(-1)). The spectrum from LTA membrane synthesized on nonseeded alumina substrate, however, showed a single broad peak similar to the powder-formed one. These results indicate that the Si-O spectral shape of the LTA membrane is influenced strongly by the synthesis method. Also, the FTIR-ATR of the LTA membrane can detect the Si-O peaks as part of the depth information. It was first shown that the relative ratio (930 cm(-1)/1012 cm(-1)) of the two Si-O peaks from the LTA membranes on seeded alumina substrates closely relates to the water selectivity (alpha) in the PV of EtOH/H2O mixture; the alpha increases exponentially with the peak ratio. This result suggests that the differences in the vertical distribution of LTA crystal and amorphous material strongly affect the dehydration performance in the EtOH/H2O PV, that is, the amorphous-like material embedded in the alumina porous support plays an important role. The relative peak ratio measurement can be used for the rapid evaluation of the dehydration performance of the membrane.  相似文献   

2.
For the dehydration process of biomass alcohol using a zeolite NaA (LTA) membrane supported by an alumina porous support tube, it is very important to understand damage of the surface crystal, which may be caused by acetic acid. Therefore, the surface structure and the chemical composition of the LTA membrane that reacted with water or acetic acid (pH 3-4) were investigated by the Fourier Transform Infrared Attenuated Total Reflectance method (FTIR-ATR), with a diamond prism as the waveguide, scanning electron microscope and an energy-dispersive X-ray analysis. For leaching experiments using water and acetic acid, ultrasonication was applied to promote the leaching rate and to surely prepare damaged membranes as a model experiment. The Si-O asymmetric stretching vibration spectra of the original LTA membranes showed a bimodal peak. LTA membranes after water leaching also showed the same peak. However, for the LTA membrane reacted with acetic acid of pH 3, damage of the surface LTA crystal and the loss of sodium by dissolution were clearly observed. Also, its Si-O spectral shape was broad, which suggests amorphous-like substances secondarily formed on the membrane surface. Sodium acetate was not detected for all LTA membranes reacted with acetic acid. To evaluate surface-damaged and sodium-loss membranes, FTIR-ATR can sensitively detect a Si-O spectral change corresponding to the surface structure and the chemical composition of the LTA membrane.  相似文献   

3.
A zeolite NaA (A-type zeolite of ca. 0.4 nm pore size; Linde Type A, LTA) membrane for the dehydration of alcohol was characterized by X-ray diffraction analysis (XRD). Also, the relationship between the X-ray absorption and the EtOH/H2O pervaporation (PV) dehydration performance (water selectivity and permeation flux) of the LTA membrane was first investigated. The LTA membranes used here were gel-synthesized hydrothermally on an alumina porous support tube. Since diffraction lines from the alumina generate from a deeper layer than those of the LTA crystal, and are absorbed by both the surface LTA crystal and materials embedded in the alumina porous support, the alumina (113) diffraction line was intensively monitored to estimate the overall X-ray absorption by the LTA membrane. The intensity of the alumina (113) diffraction line showed a good correlation with the PV dehydration performance of the LTA membrane, that is, lower values with the water selectivity and higher values with the permeation flux. The lower diffraction intensity means stronger X-ray absorption by the LTA membrane. The major factor causing the difference in the X-ray absorption is the thickness or quantity of materials embedded in an alumina porous support, rather than those of the surface LTA crystal. These phenomena can be used conveniently (without real PV experiments) to determine the EtOH/H2O PV dehydration performance of the LTA membrane.  相似文献   

4.
Linde Type A (LTA) zeolites have been synthesized in the current study by simple sol–gel technique. The crystal growth has been controlled by varying the hydrogel synthesis time and annealing temperature. The resulting products obtained at various crystallization times and temperatures have been studied using X-ray powder diffraction (XRD) method, High resolution transmission electron microscopy images, scanning electron microscopy (SEM) micrographs, energy dispersive study and Brunauer–Emmett–Teller (BET) analysis. The TEM images of the final LTA zeolite annealed at 500 °C revealed the formation of cubic structure. XRD analysis revealed that the crystallinity improved with annealing. BET analysis revealed that the synthesized LTA is a well crystallized 4A zeolite. LTA zeolites were dispersed in poly ethylene glycol in the ratio 3:100 and 5:100 and coated on porous alumina beads for the formation of membrane. The SEM images revealed excellent formation of fine structure LTA zeolite membrane with uniform coating. The membrane consisted of a top layer with thickness of 1.14–2.0 µm. Crystals in the top layer showed cubic morphology and amorphous phase was observed at the grain boundaries present between LTA zeolite and alumina substrate.  相似文献   

5.
Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.  相似文献   

6.
A sandwich FAU–LTA zeolite dual‐layer membrane has been developed and used as a catalytic membrane reactor for the synthesis of dimethyl ether (DME). In the top H‐FAU layer with mild acidity, methanol is dehydrated to DME. The other reaction product, water, is removed in situ through a hydrophilic Na‐LTA layer, which is located between the porous alumina support and the H‐FAU top layer. The combination of mild acidity with the continuous removal of water results in high methanol conversion (90.9 % at 310 °C) and essentially 100 % DME selectivity. Furthermore, owing to the selective and continuous removal of water through the Na‐LTA membrane, catalyst deactivation can be effectively suppressed.  相似文献   

7.
ZrO2和Al2O3在金红石型TiO2表面的包覆研究   总被引:3,自引:0,他引:3  
以(NaPO3)6为分散剂,用化学沉积法对金红石型TiO2进行了锆、铝氧化物包膜。研究了包覆过程中,TiO2的分散、ZrO2和Al2O3用量、反应pH值以及时间对二氧化钛的亨特白度(Wh)和光泽度(L)的影响,并采用扫描电镜(SEM)、透射电镜(TEM)、X光电子能谱(XPS)和沉降性试验对包覆前后的二氧化钛进行了表征,得到包锆、包铝氧化物的优化工艺条件。研究了二氧化钛表面包锆、铝氧化物的包覆机理和表面结构。经过其表面包膜处理,二氧化钛的颜料性能得到明显改善。  相似文献   

8.
Porous anodic alumina (PAA) was used as a template to prepare Co nanowires array from 1-ethyl-3-methylimidazolium chloride ionic liquid by direct current method. The surface morphology of porous anodic alumina template was observed by field emission-scanning tunneling microscopy (FE-SEM) before and after the electrodeposition of Co nanowires. The electrodeposition of Co nanowires was characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). TEM results indicate that the Co nanowire surface is coarse and porous when aqueous solution was used as electrolyte, and the Co nanowire deposited from the ionic liquid is uniform and smooth. XRD results show that the electrodeposition of Co is a mixture of crystal and microcrystal phase.  相似文献   

9.
The fabrication of a polyelectrolyte multilayer (PEM) on a porous membrane was successfully improved by using spin-coating electrostatic self-assembly. Surprisingly, the quality of the PEM film obtained on the nanoporous alumina substrate (i.e., its thickness and surface morphology) was comparable to that of a film deposited on silicon. An optical molecular switch that acts as an ion-gating channel was realized using a PEM membrane deposited layer-by-layer on an alumina support. One of the layer components of this device was a poly(acrylamide) copolymer containing an azobenzene chromophore, which is known to reveal strong voluminous expansion and contraction during light-induced reversible cis/trans isomerizations. The permeability of the bulk SO4(2-) ions was found to be sensitive to the changed channel sizes; for instance, the ion-permeation rate of SO4(2-) increased about 1.6 times after UV irradiation of the PEM, whereas that of the Cl- ion increased only 1.2 times. In the study, it was successfully demonstrated that the ion flow through the PEM membrane could be reversibly switched on and off over several azobenzene isomerization cycles.  相似文献   

10.
The formation and subsequent transformations of mesostructured silica within the confined tubular environment of anodic alumina membrane (AAM) channels [porous alumina membrane (PAM) channels] were investigated for the first time in situ with grazing incidence small-angle X-ray scattering (GISAXS) techniques, in combination with ex situ transmission electron microscopy (TEM) of the same samples. A better understanding of the mesostructure formation mechanism within the confined space of the AAM pores is a direct result of this study. Three different surfactants were used as the structure-directing agents in acid-catalyzed silica synthesis solutions. With ionic cetyltrimethylammonium bromide acting as the structure-directing agent, a columnar hexagonal structure with mesopores oriented parallel to the AAM channels was observed to form directly from the beginning of the synthesis. In samples synthesized with the nonionic surfactants Brij 56 and Pluronic P123, a circular hexagonal structure was found to form first; here, the mesopores are aligned around the circumference of the AAM channels. The circular structure subsequently transforms directly into a columnar hexagonal (P123 surfactant), or a mixture of columnar hexagonal and a new curved lamellar phase with lamellae oriented parallel to the walls of the AAM channels (Brij 56 surfactant). These transformations occur after complete solvent evaporation and therefore differ from a simple evaporation-induced phase formation. The existence of a previously postulated lamellar phase could be proven by GISAXS and TEM investigations.  相似文献   

11.
纳米结构材料由于其独特的物理化学性质以及在微电子器件、光开关等方面的应用而备受关注. 多孔氧化铝由于具有孔径分布较窄、取向一致和孔密度高等优点而广泛用于模板制备纳米结构材料. 在多孔氧化铝中可以组装金属纳米粒子[1]、半导体纳米粒子[2]、导电高分子[3]以及碳纳米管[4]等.  相似文献   

12.
朱宝库 《高分子科学》2010,28(3):337-346
<正>High density polyethylene(HDPE)/polyethylene-block-poly(ethylene glycol)(PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation(TIPS) process using diphenyl ether(DPE) as diluent.The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry(DSC).By varying the content of PE-b-PEG,the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy(SEM) and wide angle X-ray diffraction(WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis,Fourier transform infrared spectroscopy-attenuated total reflection(FTIR-ATR) and X-ray photoelectron spectroscopy(XPS).Water contact angle,static protein adsorption and water flux experiments were used to evaluate the hydrophilicity,antifouling and water permeation properties of the membranes.It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes.In the investigated range of PE-b-PEG content,the PEG blocks could not aggregate into obviously separated domains in membrane matrix.More importantly,PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation,but also enrich at the membrane surface layer.Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity,protein absorption resistance and water permeation properties,which would be substantially beneficial to HDPE membranes for water treatment application.  相似文献   

13.
Polycrystalline silicalite membranes were prepared on two kinds of porous supports by hydrothermal synthesis. The pervaporation performance of the silicalite membrane obtained was investigated using an acetic acid-water mixture as a feed. The silicalite membrane on the sintered stainless steel support selectively permeates acetic acid in the concentration of the feed acetic acid in the region of 5 to 40 vol%. However, the membrane on the porous alumina support showed no separation for the aqueous acetic acid solution. From the fact that the top layer of the membrane on the alumina support was not composed of pure silicalite but ZSM-5 zeolite crystals, which contained Brønsted acidic sites (Si(OH)Al) in the framework, it was suggested that the acidic sites associated with the framework aluminums play an important role in the separation of the acetic acid-water mixture. A long-term test of the pervaporation was also carried out to clarify the stability of the membrane.  相似文献   

14.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

15.
High density polyethylene (HDPE)/polyethylene-Wock-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.  相似文献   

16.
近年来,随着纳米科学的迅猛发展,对定向生长的纳米碳管、半导体、氧化物及金属纳米线、管等无机材料的制备引起人们广泛的关注.然而对定向生长的聚合物纳米结构材料如聚合物的纳米管、线等的制备,却未见报道.最近,德国马普微结构研究所通过模板法制得了具有取向一致的聚合物纳米结构材料,该材料在化学传感器、药物输送以及微环境研究等方面具有广泛的应用前景.  相似文献   

17.
纳米材料,包括尺寸为纳米量级的超细微粒?线?薄膜?量子阱和超晶格等引起了人们广泛的重视 [1,2] ?其中 , 半导体纳米微粒和由其构成的纳米固体结构开辟了材料科学研究的新领域?硫化镉 (CdS) 作为一种重要的Ⅱ - Ⅵ族无机半导体材料 , 具有独特的光电性质 , 在光电化学电池和多相光催化反应中都有广泛应用?近年来 , 已有大量关于合成 CdS 纳米结构的文献报导 [3~12] , 所采用的方法如反胶束法?单分子膜法?自组装法以及电化学沉积法等 , 其中非水电解与模板技术相结合的制备方法引起了人们高度的重视并且被广泛的采用?自从 Baranski 等在上…  相似文献   

18.
0引言众所周知,钛及其合金具有优良的机械力学性能,但其生物活性不足。因此,在金属基体上涂敷一层生物活性涂层,结合金属与生物活性材料的各自优势,已成为世界各国学者研究最为活跃的生物复合材料体系之一。该体系可用于临床医学,作为人体硬组织等的修复替换材料。目前,已开发出多种在金属基体上制备生物活性涂层的工艺和方法。如:等离子沉积法[1]、离子束溅射法[2]、激光熔覆法[3]、溶胶鄄凝胶法[4]、电化学沉积与水热处理合成法[5]、电泳沉积[6]、电结晶[7]等多种方法。但现有涂层材料尚存在一些问题:(1)由于替换材料的高硬度而导致其周围硬组织坏死[8];(2)由于疲劳磨损或热膨胀不匹配引起涂层脱落[9];(3)由于异质相导致生物活性降解[10]。因此,研究新的制备工艺,开发新的生物复合材料体系就显得十分重要。考虑到Al2O3具有优异的抗磨损、耐腐蚀等性能,以及较好的生物相容性,常作为临床选用的人造硬组织承载材料[11],故在本研究工作中,我们首次采用阳极氧化与水热处理复合工艺研制酸式磷酸钙/Al2O3鄄Ti生物复合材料体系。该体系不同于由日本Ishizawa等研制的HAp/TiO2鄄Ti复合体系[12]。主要体现在两...  相似文献   

19.
硅基多孔氧化铝膜的整体发光及其化学修饰   总被引:3,自引:0,他引:3  
杨阳  陈慧兰  鲍希茂 《化学学报》2003,61(3):320-324
利用电子束蒸发技术在硅衬底上沉积了500nm厚的铝膜,分别在硫酸、磷酸和 草酸中通过阳极氧化技基多孔氧化铝模板通过透射电镜(TEM)观测了形貌,并测 定了它们的光致发光光谱(PL).结果表明利用不同的酸性质得到的多孔氧化铝模 板的发光现象是不完全相同的.基于这种思路,采用了其它的酸性电解质磺基水杨 酸或在酸性电解质中预先加人有机荧光物质罗丹明6G,得到了不同发光特性的硅基 多孔氧化铝膜.结合过去的理论,对上述荧光光谱的来源以及变化进行了讨论.多 孔氧化铝的发光一般都来自于与氧空位有关的缺陷态F~+,但它的复合过程会受到 体系中质能级或其它发光物质的影响.来自电解质中的物质在阳极氧化的过程中会 参与氧化铝膜的形成,进而改变氧化铝膜的成分,并影响其发光过程.  相似文献   

20.
Electroless deposition was used to coat porous alumina membranes with gold. This process reduced the pore diameters and provided a platform suitable for surface modifications with self assembled monolayers (SAMs). The surface enhanced Raman scattering (SERS) effect was employed in order to confirm and characterise the formation of SAMs of 3-mercaptobenzoic acid (mMBA) inside the pores of gold nanotube membranes prepared using porous alumina (PA) templates. The investigation of the coverage and reproducibility of SAMs within porous matrices is of utmost importance in the design of filtration membranes and sensing platforms. Raman spectroscopy is capable of spatially resolved techniques such as mapping which was used to characterise the distribution of mMBA assembly within the pores. Due to the highly ordered structure of porous alumina and well controlled electroless gold deposition, these gold coated membranes have the potential to develop into SERS active substrates for ultrasensitive sensing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号