首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers   总被引:6,自引:0,他引:6  
The Ramsey number r(H,Kn) is the smallest integer N so that each graph on N vertices that fails to contain H as a subgraph has independence number at least n. It is shown that r(K2,m,Kn)(m−1+o(1))(n/log n)2 and r(C2m,Kn)c(n/log n)m/(m−1) for m fixed and n→∞. Also r(K2,n,Kn)=Θ(n3/log2 n) and .  相似文献   

2.
For a graph G of size m1 and edge-induced subgraphs F and H of size k (1km), the subgraph H is said to be obtained from F by an edge jump if there exist four distinct vertices u,v,w, and x in G such that uvE(F), wxE(G)−E(F), and H=Fuv+wx. The minimum number of edge jumps required to transform F into H is the k-jump distance from F to H. For a graph G of size m1 and an integer k with 1km, the k-jump graph Jk(G) is that graph whose vertices correspond to the edge-induced subgraphs of size k of G and where two vertices of Jk(G) are adjacent if and only if the k-jump distance between the corresponding subgraphs is 1. All connected graphs G for which J2(G) is planar are determined.  相似文献   

3.
The following results are obtained. (i) Let p, d, and k be fixed positive integers, and let G be a graph whose vertex set can be partitioned into parts V1, V2,…, Va such that for each i at most d vertices in V1Vi have neighbors in Vi+1 and r(Kk, Vi) p | V(G) |, where Vi denotes the subgraph of G induced by Vi. Then there exists a number c depending only on p, d, and k such that r(Kk, G)c | V(G) |. (ii) Let d be a positive integer and let G be a graph in which there is an independent set I V(G) such that each component of GI has at most d vertices and at most two neighbors in I. Then r(G,G)c | V(G) |, where c is a number depending only on d. As a special case, r(G, G) 6 | V(G) | for a graph G in which all vertices of degree at least three are independent. The constant 6 cannot be replaced by one less than 4.  相似文献   

4.
Cubic bridgeless graphs with chromatic index four are called uncolorable. We introduce parameters measuring the uncolorability of those graphs and relate them to each other. For k=2,3, let ck be the maximum size of a k-colorable subgraph of a cubic graph G=(V,E). We consider r3=|E|−c3 and . We show that on one side r3 and r2 bound each other, but on the other side that the difference between them can be arbitrarily large. We also compare them to the oddness ω of G, the smallest possible number of odd circuits in a 2-factor of G. We construct cyclically 5-edge connected cubic graphs where r3 and ω are arbitrarily far apart, and show that for each 1c<2 there is a cubic graph such that ωcr3. For k=2,3, let ζk denote the largest fraction of edges that can be k-colored. We give best possible bounds for these parameters, and relate them to each other.  相似文献   

5.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

6.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

7.
Length-bounded disjoint paths in planar graphs   总被引:1,自引:0,他引:1  
The following problem is considered: given: an undirected planar graph G=(V,E) embedded in , distinct pairs of vertices {r1,s1},…,{rk,sk} of G adjacent to the unbounded face, positive integers b1,…,bk and a function ; find: pairwise vertex-disjoint paths P1,…,Pk such that for each i=1,…,k, Pi is a risi-path and the sum of the l-length of all edges in Pi is at most bi. It is shown that the problem is NP-hard in the strong sense. A pseudo-polynomial-time algorithm is given for the case of k=2.  相似文献   

8.
Lingsheng Shi   《Discrete Mathematics》2003,270(1-3):251-265
The Ramsey number R(G1,G2,…,Gk) is the least integer p so that for any k-edge coloring of the complete graph Kp, there is a monochromatic copy of Gi of color i. In this paper, we derive upper bounds of R(G1,G2,…,Gk) for certain graphs Gi. In particular, these bounds show that R(9,9)6588 and R(10,10)23556 improving the previous best bounds of 6625 and 23854.  相似文献   

9.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

10.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

11.
Some results on integral sum graphs   总被引:1,自引:0,他引:1  
Wang Yan  Bolian Liu   《Discrete Mathematics》2001,240(1-3):219-229
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(KnE(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(KnE(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211).  相似文献   

12.
We consider the following model Hr(n, p) of random r-uniform hypergraphs. The vertex set consists of two disjoint subsets V of size | V | = n and U of size | U | = (r − 1)n. Each r-subset of V × (r−1U) is chosen to be an edge of H ε Hr(n, p) with probability p = p(n), all choices being independent. It is shown that for every 0 < < 1 if P = (C ln n)/nr−1 with C = C() sufficiently large, then almost surely every subset V1 V of size | V1 | = (1 − )n is matchable, that is, there exists a matching M in H such that every vertex of V1 is contained in some edge of M.  相似文献   

13.
Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1, 1999, pp. 387–400) considered a variation of the classical Turán-type extremal problems as follows: For a given graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(H,n) has a realization G containing H as a subgraph. In this paper, for given integers k and ℓ, ℓ7 and 3kℓ, we completely determine the smallest even integer σ(kC,n) such that each n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(kC,n) has a realization G containing a cycle of length r for each r, krℓ.  相似文献   

14.
A random graph Gn(x) is constructed on independent random points U1,…,Un distributed uniformly on [0,1]d, d1, in which two distinct such points are joined by an edge if the l-distance between them is at most some prescribed value 0<x<1. The connectivity distance cn, the smallest x for which Gn(x) is connected, is shown to satisfy
(1)
For d2, the random graph Gn(x) behaves like a d-dimensional version of the random graphs of Erdös and Rényi, despite the fact that its edges are not independent: cn/dn→1, a.s., as n→∞, where dn is the largest nearest-neighbor link, the smallest x for which Gn(x) has no isolated vertices.  相似文献   

15.
Given a graph G and a positive integer d, an L(d,1)-labeling of G is a function f that assigns to each vertex of G a non-negative integer such that if two vertices u and v are adjacent, then |f(u)−f(v)|d; if u and v are not adjacent but there is a two-edge path between them, then |f(u)−f(v)|1. The L(d,1)-number of G, λd(G), is defined as the minimum m such that there is an L(d,1)-labeling f of G with f(V){0,1,2,…,m}. Motivated by the channel assignment problem introduced by Hale (Proc. IEEE 68 (1980) 1497–1514), the L(2,1)-labeling and the L(1,1)-labeling (as d=2 and 1, respectively) have been studied extensively in the past decade. This article extends the study to all positive integers d. We prove that λd(G2+(d−1)Δ for any graph G with maximum degree Δ. Different lower and upper bounds of λd(G) for some families of graphs including trees and chordal graphs are presented. In particular, we show that the lower and the upper bounds for trees are both attainable, and the upper bound for chordal graphs can be improved for several subclasses of chordal graphs.  相似文献   

16.
Suppose we are given a family of sets , where S(j) = ∩ki=1 Hi(j), and suppose each collection of sets Hi(j1),…,Hi(jk+1) has a lower bound under the partial ordering defined by inclusion, then the maximal size of an independent subcollection of is k. For example, for a fixed collection of half-spaces H1,…,Hk in , we define to be the collection of all sets of the form
where χi, I=1,…, k are points in . Then the maximal size of an independent collection of such sets us k. This leads to a proof of the bound of 2d due to Rényi et al. (1951) for the maximum size of an independent family of rectangles in with sides parallel to the coordinate axes, and to a bound of d+1 for the maximum size of an independent family of simplices in with sides parallel to given hyperplanes H1,…,Hd+1.  相似文献   

17.
In a recent paper, D.J. Kleitman and M.E. Saks gave a proof of Huang's conjecture on alphabetic binary trees.

Given a set E = {ei}, I = 0, 1, 2, …, m and assigned positive weights to its elements and supposing the elements are indexed such that w(e0) ≤ w(e1) ≤ … ≤w (em), where w(ei) is the weight of ei, we call the following sequence E* a ‘saw-tooth’ sequence

E*=(e0,em,e1,…,ej,emj,…).

Huang's conjecture is: E* is the most expensive sequence for alphabetic binary trees. This paper shows that this property is true for the L-restricted alphabetic binary trees, where L is the maximum length of the leaves and log2(m + 1) ≤Lm.  相似文献   


18.
Asymptotic behavior of a nonlinear delay difference equation   总被引:1,自引:0,他引:1  
This paper considers a class of nonlinear difference equations
Δ3yn + ƒ(n, yn, ynr) = 0, n N (n0)
. A necessary and sufficient condition for the existence of a bounded nonoscillatory solution is given.  相似文献   

19.
The chromatic difference sequence cds(G) of a graph G with chromatic number n is defined by cds(G) = (a(1), a(2),…, a(n)) if the sum of a(1), a(2),…, a(t) is the maximum number of vertices in an induced t-colorable subgraph of G for t = 1, 2,…, n. The Cartesian product of two graphs G and H, denoted by GH, has the vertex set V(GH = V(G) x V(H) and its edge set is given by (x1, y1)(x2, y2) ε E(GH) if either x1 = x2 and y1 y2 ε E(H) or y1 = y2 and x1x2 ε E(G).

We obtained four main results: the cds of the product of bipartite graphs, the cds of the product of graphs with cds being nondrop flat and first-drop flat, the non-increasing theorem for powers of graphs and cds of powers of circulant graphs.  相似文献   


20.
A dominating set for a graph G = (V, E) is a subset of vertices VV such that for all v ε VV′ there exists some u ε V′ for which {v, u} ε E. The domination number of G is the size of its smallest dominating set(s). For a given graph G with minimum size dominating set D, let m1 (G, D) denote the number of edges that have neither endpoint in D, and let m2 (G, D) denote the number of edges that have at least one endpoint in D. We characterize the possible values that the pair (m1 (G, D), m2 (G, D)) can attain for connected graphs having a given domination number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号