首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

2.
Toru Kojima   《Discrete Mathematics》2003,270(1-3):299-309
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)−f(y)| : xyE(G)} taken over all proper numberings f of G. The composition of two graphs G and H, written as G[H], is the graph with vertex set V(GV(H) and with (u1,v1) is adjacent to (u2,v2) if either u1 is adjacent to u2 in G or u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the composition of two graphs. Let G be a connected graph. We denote the diameter of G by D(G). For two distinct vertices x,yV(G), we define wG(x,y) as the maximum number of internally vertex-disjoint (x,y)-paths whose lengths are the distance between x and y. We define w(G) as the minimum of wG(x,y) over all pairs of vertices x,y of G with the distance between x and y is equal to D(G). Let G be a non-complete connected graph and let H be any graph. Among other results, we prove that if |V(G)|=B(G)D(G)−w(G)+2, then B(G[H])=(B(G)+1)|V(H)|−1. Moreover, we show that this result determines the bandwidth of the composition of some classes of graphs composed with any graph.  相似文献   

3.
A face F of a polyhedral graph G(V,E,F) is an a1,a2,…,al-face if is an l-gon and the degrees d(xi) of the vertices xiV incident with in the cyclic order are ai,i=1,2,…,l. The lexicographic minimum b1,b2,…,bl such that is a b1,b2,…,bl-face is the type of . All polyhedral graphs having only one type of faces are listed. It is proved that the set of triangulations having only faces of different types is non-empty and finite.  相似文献   

4.
For an integer n3, the crown Sn0 is defined to be the graph with vertex set {x0,x1,…,xn−1,y0,y1,…,yn−1} and edge set {xiyj: 0i,jn−1, ij}. In this paper we give some sufficient conditions for the edge decomposition of the crown into isomorphic cycles.  相似文献   

5.
Let D = (V1, V2; A) be a directed bipartite graph with |V1| = |V2| = n 2. Suppose that dD(x) + dD(y) 3n + 1 for all x ε V1 and y ε V2. Then D contains two vertex-disjoint directed cycles of lengths 2n1 and 2n2, respectively, for any positive integer partition n = n1 + n2. Moreover, the condition is sharp for even n and nearly sharp for odd n.  相似文献   

6.
A dominating set for a graph G = (V, E) is a subset of vertices VV such that for all v ε VV′ there exists some u ε V′ for which {v, u} ε E. The domination number of G is the size of its smallest dominating set(s). For a given graph G with minimum size dominating set D, let m1 (G, D) denote the number of edges that have neither endpoint in D, and let m2 (G, D) denote the number of edges that have at least one endpoint in D. We characterize the possible values that the pair (m1 (G, D), m2 (G, D)) can attain for connected graphs having a given domination number.  相似文献   

7.
Let G be an infinite locally finite connected graph. We study the reconstructibility of G in relation to the structure of its end set . We prove that an infinite locally finite connected graph G is reconstructible if there exists a finite family i)0i (n2) of pairwise finitely separable subsets of such that, for all x,y,x′,yV(G) and every isomorphism f of G−{x,y} onto G−{x′,y′} there is a permutation π of {0,…,n−1} such that for 0i<n. From this theorem we deduce, as particular consequences, that G is reconstructible if it satisfies one of the following properties: (i) G contains no end-respecting subdivision of the dyadic tree and has at least two ends of maximal order; (ii) the set of thick ends or the one of thin ends of G is finite and of cardinality greater than one. We also prove that if almost all vertices of G are cutvertices, then G is reconstructible if it contains a free end or if it has at least a vertex which is not a cutvertex.  相似文献   

8.
Let H be a Hopf algebra over a field k and let H AA, h ah.a, be an action of H on a commutative local Noetherian kalgebra (A, m). We say that this action is linearizable if there exists a minimal system x1, …, xn of generators of the maximal ideal m such that h.xi ε kx1 + …+ kxn for all h ε H and i = 1, …, n. In the paper we prove that the actions from a certain class are linearizable (see Theorem 4), and we indicate some consequences of this fact.  相似文献   

9.
The following theorem is proved. If the sets and a εn+1i=1 conv Vi, then there exist elements vi ε Vi (i=1…,n+1) such that a ε conv{v1,…,vn+1}. This is generalization of Carathéodory's theorem. By applying this and similar results some open questions are answered.  相似文献   

10.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

11.
Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1, 1999, pp. 387–400) considered a variation of the classical Turán-type extremal problems as follows: For a given graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(H,n) has a realization G containing H as a subgraph. In this paper, for given integers k and ℓ, ℓ7 and 3kℓ, we completely determine the smallest even integer σ(kC,n) such that each n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(kC,n) has a realization G containing a cycle of length r for each r, krℓ.  相似文献   

12.
A mapping ƒ : n=1InI is called a bag mapping having the self-identity if for every (x1,…,xn) ε i=1In we have (1) ƒ(x1,…,xn) = ƒ(xi1,…,xin) for any arrangement (i1,…,in) of {1,…,n}; monotonic; (3) ƒ(x1,…,xn, ƒ(x1,…,xn)) = ƒ(x1,…,xn). Let {ωi,n : I = 1,…,n;n = 1,2,…} be a family of non-negative real numbers satisfying Σi=1nωi,n = 1 for every n. Then one calls the mapping ƒ : i=1InI defined as follows an OWA bag mapping: for every (x1,…,xn) ε i=1In, ƒ(x1,…,xn) = Σi=1nωi,nyi, where yi is the it largest element in the set {x1,…,xn}. In this paper, we give a sufficient and necessary condition for an OWA bag mapping having the self-identity.  相似文献   

13.
Given graph G=(V,E) on n vertices, the profile minimization problem is to find a one-to-one function f:V→{1,2,…,n} such that ∑vV(G){f(v)−minxN[v] f(x)} is as small as possible, where N[v]={v}{x: x is adjacent to v} is the closed neighborhood of v in G. The trangulated triangle Tl is the graph whose vertices are the triples of non-negative integers summing to l, with an edge connecting two triples if they agree in one coordinate and differ by 1 in the other two coordinates. This paper provides a polynomial time algorithm to solve the profile minimization problem for trangulated triangles Tl with side-length l.  相似文献   

14.
We consider the following model Hr(n, p) of random r-uniform hypergraphs. The vertex set consists of two disjoint subsets V of size | V | = n and U of size | U | = (r − 1)n. Each r-subset of V × (r−1U) is chosen to be an edge of H ε Hr(n, p) with probability p = p(n), all choices being independent. It is shown that for every 0 < < 1 if P = (C ln n)/nr−1 with C = C() sufficiently large, then almost surely every subset V1 V of size | V1 | = (1 − )n is matchable, that is, there exists a matching M in H such that every vertex of V1 is contained in some edge of M.  相似文献   

15.
The problem of building larger graphs with a given graph as an induced subgraph is one which can arise in various applications and in particular can be important when constructing large communications networks from smaller ones. What one can conclude from this paper is that generalized prisms over G may provide an important such construction because the connectivity of the newly created graph is larger than that of the original (connected) graph, regardless of the permutation used.

For a graph G with vertices labeled 1,2,…, n and a permutation in Sn, the generalized prisms over G, (G) (also called a permutation graph), consists of two copies of G, say Gx and Gy, along with the edges (xi, y(i), for 1≤in. The purpose of this paper is to examine the connectivity of generalized prisms over G. In particular, upper and lower bounds are found. Also, the connectivity and edge-connectivity are determined for generalized prisms over trees, cycles, wheels, n-cubes, complete graphs, and complete bipartite graphs. Finally, the connectivity of the generalized prism over G, (G), is determined for all in the automorphism group of G.  相似文献   


16.
Let L be the set of all additive and hereditary properties of graphs. For P1, P2 L we define the reducible property R = P1 P2 as follows: G P1P2 if there is a bipartition (V1, V2) of V(G) such that V1 P1 and V2 P2. For a property P L, a reducible property R is called a minimal reducible bound for P if P R and for each reducible property R′, RRP R′. It is proved that the class of all outerplanar graphs has exactly two minimal reducible bounds in L. Some related problems for planar graphs are discussed.  相似文献   

17.
In a circular permutation diagram, there are two sets of terminals on two concentric circles: Cin and Cout. Given a permutation Π = [π1, π2, …, πn], terminal i on Cin and terminal πi on Cout are connected by a wire. The intersection graph Gc of a circular permutation diagram Dc is called a circular permutation graph of a permutation Π corresponding to the diagram Dc. The set of all circular permutation graphs of a permutation Π is called the circular permutation graph family of permutation Π. In this paper, we propose the following: (1) an O(V + E) time algorithm to check if a labeled graph G = (V, E) is a labeled circular permutation graph. (2) An O(n log n + nt) time algorithm to find a maximum independent set of a family, where n = Π and t is the cardinality of the output. (Number t in the worst case is O(n). However, if Π is uniformly distributed (and independent from i), its expected value is O(√n).) (3) An O(min(δVclog logVc,VclogVc) + Ec) time algorithm for finding a maximum independent set of a circular permutation diagram Dc, where δ is the minimum degree of vertices in the intersection graph Gc = (Vc,Ec) of Dc. (4) An O(n log log n) time algorithm for finding a maximum clique and the chromatic number of a circular permutation diagram, where n is the number of wires in the diagram.  相似文献   

18.
An in-tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. In this paper, pancyclic orderings of a strong in-tournament D are investigated. This is a labeling, say x1,x2,…,xn, of the vertex set of D such that D[{x1,x2,…,xt}] is Hamiltonian for t=3,4,…,n. Moreover, we consider the related problem on weak pancyclic orderings, where the same holds for t4 and x1 belongs to an arbitrary oriented 3-cycle. We present sharp lower bounds for the minimum indegree ensuring the existence of a pancyclic or a weak pancyclic ordering in strong in-tournaments.  相似文献   

19.
Cubic bridgeless graphs with chromatic index four are called uncolorable. We introduce parameters measuring the uncolorability of those graphs and relate them to each other. For k=2,3, let ck be the maximum size of a k-colorable subgraph of a cubic graph G=(V,E). We consider r3=|E|−c3 and . We show that on one side r3 and r2 bound each other, but on the other side that the difference between them can be arbitrarily large. We also compare them to the oddness ω of G, the smallest possible number of odd circuits in a 2-factor of G. We construct cyclically 5-edge connected cubic graphs where r3 and ω are arbitrarily far apart, and show that for each 1c<2 there is a cubic graph such that ωcr3. For k=2,3, let ζk denote the largest fraction of edges that can be k-colored. We give best possible bounds for these parameters, and relate them to each other.  相似文献   

20.
A random graph Gn(x) is constructed on independent random points U1,…,Un distributed uniformly on [0,1]d, d1, in which two distinct such points are joined by an edge if the l-distance between them is at most some prescribed value 0<x<1. The connectivity distance cn, the smallest x for which Gn(x) is connected, is shown to satisfy
(1)
For d2, the random graph Gn(x) behaves like a d-dimensional version of the random graphs of Erdös and Rényi, despite the fact that its edges are not independent: cn/dn→1, a.s., as n→∞, where dn is the largest nearest-neighbor link, the smallest x for which Gn(x) has no isolated vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号