首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
运用密度泛函理论(DFT)的Dmol3方法, 计算了甲醇钠引发的环氧乙烷开环聚合的反应过程. 并运用前线轨道理论对该聚合反应的各步反应历程进行了分析. 计算结果表明, 链引发为无能垒的放热反应, 放出的能量达到92.560 kJ·mol-1, 而链增长过程则需越过100.951 kJ·mol-1的反应能垒, 链增长物种与环氧乙烷的前线轨道相对称, 可以使开环聚合反应继续进行下去. 当向反应体系中加入草酸、磷酸等质子酸时, 会立即发生链终止反应. 此外, 还对链增长过渡态的合理性进行了确认, 绘出了相应的反应势能曲线.  相似文献   

2.
H2NCH2CN+H2O→H2NCH2C(OH)NH是一个重要的反应, 涉及到星际媒介中甘氨酸的形成, 与早期地球上的氨基酸起源有关. 如果没有考虑氢隧道效应, 在MP2/6-311+G(d,p)级别上计算反应能垒是254.7 kJ·mol-1, 在星际媒介中该气相反应很难进行. 在星际媒介冰颗粒表面上, 水分子催化反应增强了该化学反应的活性. H2NCH2CN与(H2O)3反应中的两个水分子作为催化剂降低活化能77.5 kJ·mol-1和活化自由能70.9 kJ·mol-1, 并且通过氢键桥协同传递质子. 量子氢隧道对于该反应进行至关紧要,采用小弯曲隧道(SCT)近似和正则变分过渡态理论(CVT)方法研究. 温度50 K时, 速率常数kSCT/CVT为1.86×10-23 cm3·molecule-1·s-1, 表明在星际媒介中通过质子隧道机理该反应容易进行. 研究结果与地球上的氨基酸起源于地球本身物质的观点相一致.  相似文献   

3.
采用密度泛函理论(DFT)以及广义梯度近似方法(GGA)计算了甲酸根(HCOO)在Cu(110)、Ag(110)和Au(110)表面的吸附. 计算结果表明, 短桥位是最稳定的吸附位置, 计算的几何参数与以前的实验和计算结果吻合. 吸附热顺序为Cu(110)(-116 kJ·mol-1)>Ag(110)(-57 kJ·mol-1)>Au(110)(-27 kJ·mol-1), 与实验上甲酸根的分解温度相一致. 电子态密度分析表明, 吸附热顺序可以用吸附分子与金属d-带之间的Pauli 排斥来关联, 即排斥作用越大, 吸附越弱. 另外还从计算的吸附热数据以及实验上HCOO的分解温度估算了反应CO2+1/2H2→HCOO的活化能, 其大小顺序为Au(110)>Ag(110)>Cu(110).  相似文献   

4.
用从头算方法在6-31G的水平上研究了丙酮酸和苯甲酰甲酸热分解反应的机理.反应过程中各驻点都进行MP2相关能校准.计算结果表明:这两个反应都是羟基氢经历五元环过渡态迁移到α-羰基氧上形成氢键中间体;然后氢键中间体直接分解成异构体和二氧化碳;最后异构体经历三元环过渡态异构化成相应的醛.其中氢迁是决速步骤.在MP2/6-31G//HF/6-31G基础上,对应于这两个反应速控步骤的活化位垒分别是186.0kJ·mol-1和169.3kJ·mol-1.在传统过渡态理论的基础上,计算了这两个反应在一定温度范围内热速率常数,理论的计算结果与实验值有很好的吻合.  相似文献   

5.
O(3P)+O2H→OH+O2反应机理的密度泛函理论研究   总被引:4,自引:3,他引:1  
用密度泛函理论方法研究了O(3P)与O2H反应生成羟基和氧分子的反应机理. 在PW91/6-31+G水平上用梯度解析技术全自由度优化上述反应物、产物和反应路径上的中间体及过渡态几何构型, 并通过频率振动分析加以确认, 计算IRC反应路径及中间体异构化过程, 确定了此反应的可能反应通道. 结果表明: 该反应是多通道多步骤的强放热反应. 首先形成顺式或反式O3H富能中间体, 此过程无能垒; 然后跨过一个能垒分解成产物OH和O2. 通道IM1→TS1比IM2→TS2克服的能垒要大, 反应放热372.822 kJ*mol-1. IM1TS3IM2 可相互转化.  相似文献   

6.
陈界豪  王艳  冯文林 《化学学报》1999,57(9):974-980
用从头算的方法在6-31G水平上研究了3-羟基-3-甲基-2-丁酮(1)和苯甲酰甲酸甲酯(2)热分解反应的机理。结果是:前一反应是经历五元环过渡态到达氢键中间体,它接着直接分解成乙醛的异构体和丙酮,最后乙醛的异构体异构化成乙醛;后一反应经历六元环过渡态形成中间体1(INT1),中间体1(INT1)直接分解成中间体2(INT2)和甲醛,中间体2(INT2)经过第二个过渡态分解成苯甲醛的异构体和一氧化碳,最后苯甲醛异构体异构化成苯甲醛。其中氢迁过程是反应的速控步骤。在MP~2/6-31G//HF/6-31G+ZPE水平上,对应于这两个反应速控步骤的活化位垒分别是251.42kJ/moL和247.94kJ/mol。采用传统过渡态理论计算了两反应的热反应速率常数,理论的计算结果与实验值吻合较好。  相似文献   

7.
采用密度泛函(DFT)及二级微扰理论(MP2)对六甲基二硅烷的催化裂解过程进行了计算.结果显示,该反应分三步进行,各步的能垒分别为144.9、77.4及214.9 kJ·mol-1,决定反应速度的是第三步.总反应是放热的,其中各步的焓变分别为22.4、-237.6、-127.6 kJ·Mol-1,反应的标准吉布斯自由能变为-348.7 kJ·mol-1,平衡常数为1.221×1061,在常温及常压下有较大的裂解倾向,理论产率比较高,计算结果与实验结果一致.  相似文献   

8.
用从头算量子化学方法MP2 与CCSD(T)研究了H2XP和SHY (X, Y=H, F, Cl, Br)分子的P与S之间形成的磷键X―P…S与硫键Y―S…P的本质与规律以及取代基X与Y对成键的影响. 计算结果表明, 硫键比磷键强, 连接在Lewis 酸上的取代基的电负性增大导致形成的磷键或硫键增强, 键能增大, 对单体的结构和性质的影响也增大; 而连接在Lewis 碱上的取代基效应则相反. 硫键键能为8.37-23.45 kJ·mol-1, 最强的硫键结构是Y 电负性最大而X 电负性最小的HFS…PH3, CCSD(T)计算的键能是16.04 kJ·mol-1; 磷键键能为7.54-14.65 kJ·mol-1, 最强的磷键结构是X 电负性最大而Y 电负性最小的H2FP…SH2, CCSD(T)计算的键能是12.52 kJ·mol-1. 对磷键与硫键能量贡献较大的是交换与静电作用. 分子间超共轭lp(S)-σ*(PX)与lp(P)-σ*(SY)对磷键与硫键的形成起着重要作用, 它导致单体的极化, 其中硫键的极化效应较大, 从而有一定的共价特征.  相似文献   

9.
应用密度泛函理论(DFT), 采用5T簇模型来模拟分子筛催化剂的酸性位, 在B3LYP/6-311+G(3df, 2p)的条件下通过理论计算研究了乙烯在酸性分子筛上的二聚反应. 对反应各驻点进行了全局优化, 经过零点能校正后, 计算得出乙烯二聚反应的活化能. 研究表明, 乙烯在分子筛上的二聚反应分三步进行: 单个乙烯分子化学吸附→第二个乙烯分子的物理吸附→两乙烯分子二聚反应. 乙烯化学吸附生成的烷氧化合物与物理吸附的乙烯分子发生二聚反应生成新的C—C键同时生成新的烷氧化合物. 计算得到的乙烯化学吸附和二聚反应的反应能垒分别为108和149 kJ·mol-1. 反应的逆过程也就是1-丁烯在酸性分子筛表面的1-丁基烷氧化合物发生β分裂反应, 计算所得相应的1-丁烯β分裂反应的能垒为217 kJ·mol-1, 远高于相应的乙烯二聚反应能垒. 此外还进一步研究了所用基组对计算结果的影响.  相似文献   

10.
赵成大  夏欣夫 《化学学报》1986,44(12):1204-1210
本文用内禀反应坐标法讨论了甲硫醛分子的脱氢反应机理. 在4-31G基组上对此反应做了量子化学从头计算和反应路解析, 得出过渡态结构, 反应势能曲线, 活化能, 反应热以及沿反应坐标反应系的一些物理量的变化, 并对过渡态做了振动分析. 所得结果与甲醛,甲硫醇和甲醇等分子的脱氢反应结果做了对比. 还给出沿反应坐标分子间弹性碰撞阶段和最佳碰撞角等信息. 同时, 计算了反应的频率因子A,讨论了反应速率常数k值与温度的关系.  相似文献   

11.
胡海泉  刘成卜 《物理化学学报》1998,14(12):1104-1107
主要用作致冷剂和发泡剂的氯氟烃(CFCs)是破坏臭氧层的主要物质之一.对氯氟烃类化合物及其降解产物(包括光解、光氧化、化学反应产物等)在大气中行为问题的研究是大气化学研究的重要内容.前人[1-3]从理论和实验两方面研究了自由基与臭氧的反应机制,但是氯氟烃光解过程中  相似文献   

12.
在CBS-QB3水平上研究了CH3CN 和·OH反应的势能面, 其中包括两个中间体和9个反应过渡态. 分别给出了各主要物质的稳定构型、相对能量及各反应路径的能垒. 根据计算的CBS-QB3势能面, 探讨了CH3CN+·OH反应机理. 计算结果表明, 生成产物P1(·CH2CN+H2O)的反应路径在整个反应体系中占主要地位. 运用过渡态理论对产物通道P1(·CH2CN+H2O)的速率常数k1(cm3·molecule-1·s-1)进行了计算. 预测了k1(cm3·molecule-1·s-1)在250-3000 K温度范围内的速率常数表达式为k1(250-3000 K)=2.06×10-20T3.045exp(-780.00/T). 通过与已有的实验值进行对比得出, 在实验所测定的250-320 K 范围内, 计算得到的k1的数值与已有的实验值比较吻合. 由初始反应物生成产物P1 (·CH2CN+H2O)只需要克服一个14.2 kJ·mol-1的能垒. 而产物·CH2CN+H2O生成后要重新回到初始反应物CH3CN+·OH, 则需要克服一个高达111.2 kJ·mol-1的能垒,这就表明一旦产物P1生成后就很难再回到初始反应物.  相似文献   

13.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

14.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming a silapolycyclic compound between singlet methylenesilylene and acetone has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (I) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 46.2 kJ/mol; (II) intermediate (INT1) then isomerizes to a planar four‐membered ring product (P3) via transition state (TS3) with an energy barrier of 47.1 kJ/mol; (III) planar four‐membered ring product (P3) further reacts with acetone (R2) to form an intermediate (INT4), which is also a barrier‐free exothermic reaction of 40.0 kJ/mol; (IV) intermediate (INT4) isomerizes to a silapolycyclic compound (P4) via transition state (TS4) with an energy barrier of 57.0 kJ/mol. Second dominant reaction pathway consists of three steps: (I) the two reactants (R1, R2) first form a four‐membered ring intermediate (INT2) through a barrier‐free exothermic reaction of 0.5 kJ/mol; (II) INT2 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 45.4 kJ/mol; (III) intermediate (INT5) isomerizes to a silapolycyclic compound (P5) via transition state (TS5) with an energy barrier of 49.3 kJ/mol. P4 and P5 are isomeric compounds. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

15.
The mechanism of the cycloaddition reaction between singlet dichloro‐germylene carbene and aldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (A) consists of four steps: (1) the two reactants (R1, R2) first form an intermediate INT2 through a barrier‐free exothermic reaction of 142.4 kJ/mol; (2) INT2 then isomerizes to a four‐membered ring compound P2 via a transition state TS2 with energy barrier of 8.4 kJ/mol; (3) P2 further reacts with aldehyde (R2) to form an intermediate INT3, which is also a barrier‐free exothermic reaction of 9.2 kJ/mol; (4) INT3 isomerizes to a germanic bis‐heterocyclic product P3 via a transition state TS3 with energy barrier of 4.5 kJ/mol. The process of channel (B) is as follows: (1) the two reactants (R1, R2) first form an intermediate INT4 through a barrier‐free exothermic reaction of 251.5 kJ/mol; (2) INT4 further reacts with aldehyde (R2) to form an intermediate INT5, which is also a barrier‐free exothermic reaction of 173.5 kJ/mol; (3) INT5 then isomerizes to a germanic bis‐heterocyclic product P5 via a transition state TS5 with an energy barrier of 69.4 kJ/mol. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
用密度泛函理论(DFT)B3LYP方法,取6-311G基组,计算研究了F+Cl2→ClF+Cl的反应机理.求得1个线形和2个三角形过渡态,反应能垒分别为1.24、46.37和105.09kJ·mol-1;同时发现F以∠FClCl为10~20°(或120~160°)进攻Cl2时,反应无能垒.此外,求得对称反应Cl′F+Cl→Cl′+ClF的能垒为40.57kJ·mol-1的1个过渡态.  相似文献   

17.
The cycloaddition mechanism of the reaction between singlet dimethyl germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD (T)//MP2/6-31G* method. From the potential energy profile, we predict that the cycloaddition reaction between singlet dimethyl germylidene and formaldehyde has two dominant reaction pathways. First dominant reaction pathway consists of three steps: (1) the two reactants (R1, R2) firstly form an intermediate INT1a through a barrier-free exothermic reaction of 43.0 kJ/mol; (2) INT1a then isomerizes to a four-membered ring compound P1 via a transition state TS1a with an energy barrier of 24.5 kJ/mol; (3) P1 further reacts with formaldehyde(R2) to form a germanic heterocyclic compound INT3, which is also a barrier-free exothermic reaction of 52.7 kJ/mol; Second dominant reaction pathway is as following: (1) the two reactants (R1, R2) firstly form a planar four-membered ring intermediate INT1b through a barrier-free exothermic reaction of 50.8 kJ/mol; (2) INT1b then isomerizes to a twist four-membered ring intermediate INT1.1b via a transition state TS1b with an energy barrier of 4.3 kJ/mol; (3) INT1.1b further reacts with formaldehyde(R2) to form an intermediate INT4, which is also a barrier-free exothermic reaction of 46.9 kJ/mol; (4) INT4 isomerizes to a germanic bis-heterocyclic product P4 via a transition state TS4 with an energy barrier of 54.1 kJ/mol.  相似文献   

18.
The mechanism of the cycloaddition reaction of forming a germanic hetero-polycyclic compound between singlet alkylidenegermylene and ethylene has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the surface energy profile, it can be predicted that the dominant reaction pathway for this reaction consists of three steps: the two reactants first form a three-membered ring intermediate INT1 through a barrier-free exothermic reaction of 35.4 kJ/mol; this intermediate then isomerizes to an active four-membered ring product P2.1 via a transition-state TS2.1 with a barrier of 57.6 kJ/mol; finally, P2.1 further reacts with ethylene to form the germanic hetero-polycyclic compound P3, for which the barrier is only 0.8 kJ/mol. The rate of this reaction path considerably differs from other competitive reaction paths, indicating that the cycloaddition reaction has an excellent selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号