首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 722 毫秒
1.
本文分别采用模板法制备氧化铜纳米花, 水热法制备氧化铁纳米环, 并自组装制备了铝-氧化铜和铝-氧化铁2种铝热剂。自组装增大了异相材料之间的接触, 分别使得铝-氧化铜的反应放热量和压力由523 J·g-1、1 858 kPa增加至1 069 J·g-1、 4 389 kPa;铝-氧化铁的反应放热量和压力由1 448 J·g-1、749 kPa增加至2 039 J·g-1、2 280 kPa。两种铝热剂的放热量和压力差别较大, 且铝-氧化铜的静电感度高于大多数含能材料, 铝-氧化铁的撞击感度特别低, 显示出不同的应用特点。  相似文献   

2.
采用超增溶纳米自组装原位合成法制备催化剂硅铝载体.实验表征结果表明,用超增溶纳米自组装原位合成法能够制备出形状规则、尺寸均一的纳米球状粒子.该纳米硅铝载体上布满了由纳米粒子搭建的孔属于介孔材料,比表面积在222.61~286.08 m2/g之间,孔容在0.486~0.625 mL/g之间,平均孔径在7~10 nm之间,并且以大孔和中孔为主.酸性主要分布在弱酸和中强酸区,并且大多数为L酸,有少量B酸.该载体粒子形状、大小比较规则、均一,粒径分布比较集中,是比较理想的纳米催化剂载体.  相似文献   

3.
采用微乳液法制备了立方晶系的NdCoO3纳米晶.利用DSC/TG-MS研究了NdCoO3对AP热分解的催化作用.结果表明,在NdCoO3的催化作用下,AP的热分解反应峰值温度下降了113℃,表观分解反应热从655 J·g-1增加到1 363 J·g-1,分解的气相产物主要有NH3,H2O,O2,HCl,N2O,NO,NO2和Cl2.在金属氧化物表面吸附生成超氧化离子(O2-)和氧离子(O-,O2-),这是加速AP分解反应的主要原因.加入NdCoO3催化AP热分解,由于对氨的氧化深度不同而导致分解放热量的增加.  相似文献   

4.
在0.15mol/LCl-和0.05mol/LSO42-的存在下,通过Fe3 溶液140℃水热反应12h分别得到α-Fe2O3纳米立方体和α-FeOOH纳米棒自组装的微球,将得到的α-FeOOH纳米棒自组装微球经600℃热处理2h后转化为α-Fe2O3纳米棒组装空心微球.利用X射线衍射仪、扫描电子显微镜、透射电子显微镜和红外光谱对所得产物进行表征和分析.结果表明,所制备的单分散的α-Fe2O3纳米立方体为六方单晶结构,其边长为500nm.直径为2~4.5μm的空心微球是由直径约150nm的α-Fe2O3纳米棒组装而成.研究了Cl-和SO42-在纳米立方体和空心微球形成过程中的作用,提出了可能的生长机理.在室温下测试了α-Fe2O3纳米立方体和α-Fe2O3纳米棒自组装微球的磁学特性,其矫顽力和剩余磁化强度分别为2858.3Oe(1Oe=79.58A/m)和0.195emu·g-1(1emu·g-1=15.7914×10-9A·m2·kg-1),218.87Oe和0.071emu·g-1.  相似文献   

5.
采用晶种法和纳米组装法合成了MCM-41/Y复合分子筛,通过粉末XRD、SEM、TEM和BET等手段对其物性进行表征,结果显示:采用晶种法合成的形貌以包埋型为主,采用纳米组装法合成的材料为附晶生长和自组装型.二者均具有微、介孔多级孔道结构,比表面积达到665.1和849.3 m2·g-1,总孔容分别为0.6438和0.6529 cm3·g-1,相对于单一Y分子筛明显增大.纳米组装法合成样品的比表面积增大更为显著,这是由于两种合成体系粒子表面电荷和集聚方式不同.  相似文献   

6.
在室温和氩气气氛下, 以MgH2 和纳米Fe为原料, 采用机械合金化(球磨法)制备了Mg2FeH6纳米晶. 考察了球磨参数(时间、 转速)对产物的影响, 对所制备的Mg2FeH6 纳米晶的组成、 结构和形貌进行了表征, 并对其储氢性能进行了测试. 结果表明, 所制备的Mg2FeH6纳米晶为立方结构, 纯度较高(91.4%), 其晶粒尺寸较小, 约为10~30 nm, 但团聚现象较为严重. Mg2FeH6纳米晶具有较低的活化能和较好的吸放氢动力学性能, 其放氢的脱附焓和脱附熵分别为(-42.8±2) kJ/mol和(-72.0±3) J/(mol·K). 在503 K和6 kPa的氢气压力下, Mg2FeH6纳米晶在70 min内放氢量达到2.5%(质量分数); 在2 MPa的氢气压力下, 上述放氢产物具有较快的起始吸氢速率.  相似文献   

7.
近年来有序交替的层状纳米结构薄膜的制备吸引了研究者们的极大关注. 目前, 这类薄膜的制备方法研究得最多的是LB技术[1~3]、基于化学吸附的自组装成膜技术[4,5]和交替沉积组装技术[6~8]. 但这几种方法都有明显的缺陷[9,10], 其中,通过LB技术制备有序交替层状纳米复合薄膜需要昂贵的仪器, 而且由于层间是分子相互作用, 膜的稳定性较差; 基于化学吸附的自组装成膜技术由于需要高反应活性的分子和特殊的基底表面, 并且由于化学反应的产率很难达到100%, 因此通过这种方法制备结构有序的多层膜并不容易; 利用交替沉积的方法制备出具有实用厚度的纳米多层膜需要耗费大量的时间. 最近, 出现了一种称为蒸发诱导的超分子自组装方法, 由这种方法制备的纳米多层膜具有成膜速度快和膜有序度高等优点, 此外还可以通过改变成膜物质浓度和拉膜速度来控制薄膜的厚度, 但与LB膜相比其厚度无法在分子水平上控制. 利用这种方法制备多层膜目前的文献报道仅限于线形SiO2与有机物的组装[10~13]. 本文利用这种方法制备了TiO2/十六烷基三甲基溴化铵纳米复合薄膜并对其结构进行了表征, 结果表明所制备的薄膜具有TiO2/十六烷基三甲基溴化铵有序交替的层状结构.  相似文献   

8.
以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料.采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究.结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite型晶体结构;复合物中MnO2的含量约为34%(w).在100°C制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变.以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1Na2SO4溶液为电解液组装成IPC/MnO2//AC混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.  相似文献   

9.
以PdCl2为前驱体,十六烷基三甲基溴化铵为保护剂,用超声波膜扩散法制备了Pd纳米粒子溶胶(E,Pd负载量1.0 wt%)。采用水热法制备了3D纳米花状Pd/CeO2催化剂(F),其结构,形貌和物理化学性能经XRD,SEM和N2吸附-脱附表征。考察了晶化时间对F形貌和晶型的影响。结果表明,晶化时间72 h制备的F72具有较高的比表面积(108 m2·g-1)和较大的孔体积(0.11 cm3·g-1);晶化时间48 h制备的F48呈现花状形貌,由大量厚度(20 nm~30 nm)均匀的纳米单元自组装而成。  相似文献   

10.
以Ni1/3Co1/3Mn1/3(OH)2(2)和Li2CO3为原料,在空气气氛中,经过高温热处理工艺制备了高结晶度的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2(1)。正交试验确定最佳工艺条件为:2 0.3 mol,n(Li):n(2)=1.2,于950℃反应13 h。电化学性能研究结果表明,在2.7 V~4.6 V,电流密度16 mA.g-1时,1的首次放电比容量为203.4 mAh.g-1;经16 mA.g-1循环2次,32 mA.g-1循环9次,80 mA.g-1循环20次后放电比容量为164.1 mAh.g-1。  相似文献   

11.
通过静电纺丝法制备Mn4+掺杂的Co3O4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn4+掺杂,Co3O4复合纳米纤维的电化学性能得到明显改善。当nConMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co3O4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co3O4纳米纤维则是76.4%。  相似文献   

12.
通过静电纺丝法制备Mn~(4+)掺杂的Co_3O_4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn~(4+)掺杂,Co_3O_4复合纳米纤维的电化学性能得到明显改善。当nCo∶nMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co_3O_4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co_3O_4纳米纤维则是76.4%。  相似文献   

13.
为探索一种高性能的锂离子电池负极材料,采用酸刻蚀法制备了高导电性、高稳定性的二维层状Ti3C2Tx,通过溶剂热法制备了具有高理论比容量的花瓣状VS2纳米片,再经过简单的液相混合得到了二维层状Ti3C2Tx-MXene@VS2复合物。通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱、X射线衍射和能谱分析对复合材料的形貌和结构进行了表征,采用循环伏安、恒流充放电、长循环和交流阻抗谱对复合材料的电化学性能进行了研究。结果表明:VS2纳米片均匀地分布在Ti3C2Tx的层间及表面,该复合物具有高的可逆容量(电流密度为0.1A·g-1时,比容量为610.5mAh·g-1)、良好的倍率性能(电流密度为2A·g-1时,比容量为197.1mAh·g-1)和良好的循环稳定性(电流密度为0.2 A·g-1时,循环600圈后比容量为874.9 mAh·g-1;电流密度为2 A·g-1时,循环1 500圈后比容量为115.9mAh·g-1)。  相似文献   

14.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

15.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。  相似文献   

16.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。  相似文献   

17.
周琦  李志洋  郑斌 《无机化学学报》2018,34(6):1103-1109
采用快速凝固与脱合金化相结合的方法制备纳米多孔Ni、Ni-Co合金,分别经腐蚀与退火获得纳米多孔NiO、NiCo_2O_4,采用XRD、SEM、TEM、N_2吸附-脱附等对多孔NiO、NiCo_2O_4电极的物相、形貌结构、孔径分布进行表征,并通过循环伏安、恒电流充放电等方法测试多孔电极的电化学性能。结果表明,得到的纳米多孔NiO具有均匀的"泥裂"式结构,在1A·g~(-1)电流密度下比电容为375 F·g~(-1),当电流密度增加至20 A·g~(-1)时的比容保持率为67.5%,在4 A·g~(-1)电流密度下循环充放电1 000次,比容保持率为81.7%;NiCo_2O_4形成典型的开放式纳米多孔双连续结构,其在1A·g~(-1)电流密度下比电容为674 F·g~(-1),当电流密度增加至20 A·g~(-1),比容保持率达72.0%;在4 A·g~(-1)电流密度下循环充放电1 000次,比容保持率达92.9%,双连续纳米多孔结构及其提供的机械稳定性,使得NiCo_2O_4表现出更为优异的超电容性能。  相似文献   

18.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

19.
分别以四水磷酸铁(FePO4·4H2O)和二水草酸亚铁(FeC2O4·2H2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe0.5Co0.5PO4固溶体材料(LiFe0.5Co0.5PO4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC2O4·2H2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 mA·g-1),放电比容量为137.5 mAh·g-1,在10C仍具有57.6 mAh·g-1的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号