首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
悬臂铁磁板磁弹性耦合作用的力学分析   总被引:2,自引:4,他引:2  
对有限板宽的悬臂铁磁板在外磁场中的磁弹性相互耦合作用的力学行为,建立了描述板弯曲和稳定性的理论模型及有限元定量分析程序,研究了外磁场倾斜角对板磁弹性失稳的临界磁场值的影响。  相似文献   

2.
软铁磁薄板磁弹性屈曲的理论模型   总被引:5,自引:0,他引:5  
周又和  郑晓静 《力学学报》1996,28(6):651-660
铁磁弹性薄板的磁弹性屈曲问题一直作为电磁——弹性力学相互作用的一个基本模型进行研究,而作用在其磁介质上的磁力计算则是定量理论预测准确与否的关键.到目前为止,文献上已有的理论模型对悬臂铁磁梁式悬臂板在横向磁场中磁弹性屈曲的理论预测值始终高于实验值,有的甚至相差100%左右.本文基于电磁力计算的微观安培电流模型,严格给出了软铁磁薄板等效横向磁力的宏观计算表达式.在此基础上,建立了电磁——力学相互耦合作用的非线性理论模型.该模型能描述铁磁薄板结构在非均匀横向磁场环境中的磁弹性失稳(或屈曲).其定量分析采用了有限元法和有限差分法相结合.数值结果显示:本模型给出的磁弹性屈曲的临界磁场值与实验值符合良好.与此同时,文中还对文献中认为较成功的Moon-Pao模型的基本假设进行了分析.定量结果发现:Moon-Pao理论模型的基本假设仅在梁式板的长厚比L/h比较大时(约在200左右),是可以接受的,而当L/h较小时,该假设将导致理论值与实验值的较大误差.L/h比值越小,理论值与实验值的误差越大  相似文献   

3.
As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results. This project was supported in part by the National Natural Science Foundation of China and the Foundation of the SEdC of China for Returned Chinese Scholars from Abroad.  相似文献   

4.
带铁磁薄膜悬臂板的磁场微感应器磁弹性特征研究   总被引:3,自引:3,他引:0  
对于在可变形非磁材料悬臂梁式板单表面粘贴可磁化材料薄膜所构成的磁场微传感器件结构,研究了其处在磁场环境中的磁弹性弯曲变形的磁场-力学特征。为此,建立了由有限元方法分析磁场与有限差分法计算挠曲变形相结合来计算其结构在磁场中产生磁弹性变形的定量分析程序。在此基础上,对于这一微传感结构的算例给出了其结构变形随外加磁场环境变化的磁场-挠度特征关系等定量结果。结果表明:微传感器件不仅可以测量出磁场的大小,而且给出了测量磁场矢量方向的可能性。  相似文献   

5.
The nonlinear vibrations of a rotating cantilever beam made of magnetoelastic materials surrounded by a uniform magnetic field are investigated. The kinetic energy, potential energy and work done by the electromagnetic force are obtained. A nonlinear dynamic model, based on the Hamilton principle, which includes the stretching vibration and bending vibration is presented. The Galerkin method is adopted to discretize the dynamic equations. The proposed method is validated by comparison with the literature. The nonlinear behaviors of the responses are studied. Then simulations for different kinds of magnetic field are conducted. The effects of magnetic field parameters, including the amplitude, plane angle, spatial angle and time-varying frequency, on the dynamic behaviors of the stretching motion and bending motion are investigated in detail. The results illustrate that the interaction effects between the rotating cantilever beam and the magnetic field will increase the vibration amplitude and fluctuation of the beam. In particular, we found that: collinear magnetic fields with equal amplitude lead to the same dynamic responses; the amplitude of magnetic field intensity increases the dynamic responses remarkably; the response amplitude changes nonlinearly with the plane angle and spatial angle of the magnetic field; and the increase of time-varying frequency enhances dynamic responses of the rotating cantilever beam.  相似文献   

6.
This paper presents an analysis of buckling/snapping, bending and post-buckling/snapping behaviors of magneto-elastic–plastic interaction and coupling for soft ferromagnetic beam-plates with geometrically nonlinear deformation and unmovable simple supports at the ends of the plates. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the theory of thin plates with the nonlinear deformation of van Karman’s type, and the Mises yield criterion and the increment theory for plastic deformation, here, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-coupling problems by the finite element method. Along with that the phenomena of buckling, bending, and post-buckling/snapping, or the characteristic curve of deflection versus magnitude of applied magnetic fields are numerically displayed, the critical values of buckling/snapping and yield magnetic fields, and the expansibility of plastic region after the plates undergo plastic deformation with increasing of the applied magnetic fields, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.  相似文献   

7.
Linearized equations and boundary conditions of a magnetoelastic ferromagnetic body are obtained with the nonlinear law of magnetization. Magnetoelastic interactions in a multi-domain ferromagnetic materials are considered for magneto soft materials, i.e. the case when the magnetic field intensity vector and magnetization vector are parallel. As a special case, the following two problems are considered: (1) the magnetoelastic stability of a ferromagnetic plate-strip in a homogeneous transverse magnetic field; (2) the stress–strain state of a ferromagnetic plane with a moving crack in a transverse magnetic field. It is shown that the modeling of magnetoelastic equations with a nonlinear law of magnetization provides qualitative and quantitative predictions on physical quantities including critical loads and stresses. In particular, it is shown that the critical magnetic field in plate stability problems found with the nonlinear law of magnetization is in better agreement with the experimental finding than the one found with a linear law. Furthermore, it is also shown that the stress concentration factor around a crack predicted with the nonlinear law of magnetization is more accurate than the one obtained with a linear counterpart. Numerical results are presented for above mentioned two problems and for various forms of nonlinear laws of magnetization.  相似文献   

8.
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented.Based on the expression of magnetic force from the variational principle of ferromagnetic plates,the buckling and bending theory of thin plates,the Mises yield criterion and the increment theory for plastic deformation,we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method.Along with the phenom- ena of buckling/snapping and bending,or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed,the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads,the plastic regions expanding with the magnitude of applied magnetic field,as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.  相似文献   

9.
从铁磁板的磁弹性广义变分原理出发,通过对铁磁板内外的磁场和板变形 场的摄动技术以及采用经典Koiter理论,对横向磁场中铁磁悬臂、简支、固支梁式薄 板磁弹性稳定性的初始后屈曲行为及缺陷敏感性进行了定性研究. 解析地给出了悬臂板对初 始缺陷敏感,简支和固支板对初始缺陷不敏感等结果,对悬臂梁式板理论预测的临界磁场值 往往大于实验观测结果的现象从定性上给予了合理解释.  相似文献   

10.
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetuelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the length-thickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameterτon the critical value BOcr of the applied magnetic field.  相似文献   

11.
Based on the magnetoelastic generalized variational principle and Hamilton's principle, a dynamic theoretical model characterizing the magnetoelastic interaction of a soft ferromagnetic medium in an applied magnetic field is developed in this paper. From the variational manipulation of magnetic scale potential and elastic displacement, all the fundamental equations for the magnetic field and mechanical deformation, as well as the magnetic body force and magnetic traction for describing magnetoelastic interaction are derived. The theoretical model is applied to a ferromagnetic rod vibrating in an applied magnetic field using a perturbation technique and the Galerkin method. The results show that the magnetic field will change the natural frequencies of the ferromagnetic rod by causing a decrease with the bending motion along the applied magnetic field where the magnetoelastic buckling will take place, and by causing an increase when the bending motion of the rod is perpendicular to the field. The prediction by the mode presented in this paper qualitatively agrees with the natural frequency changes of the ferromagnetic rod observed in the experiment.  相似文献   

12.
The purpose of this paper is to study the magnetomechanical characteristic of a microsensor which is composed of a cantilevered beam-plate with ferromagnetic films in order to measure the magnetic field from the deformation of plate when the microsensor is located in the magnetic field. To this end, a numerical approach made up of the finite element method for magnetic field and the finite difference method for deflection of the microsensor is proposed to perform the numerical analysis of deflection under magnetoelastic interaction. Some quantitative results of a case study for the magnetoelastic characteristic between the magnetic field and deflection of the microsensor in the magnetic field are given. The results show that this microsensor can be used not only to measure the magnitude of magnetic intensity, but also to possibly monitor the direction of the vector of the magnetic field. The project supported by the NNSFC(No. 19772014), the China National Foundation for Outstanding Young Researchers(No. 19725207), and Foundation for University Key Teacher by the Ministry of Education of China.  相似文献   

13.
A nonlinear two-dimensional model of a magnetoelastic flexible current-carrying ring plate is developed.Asystem of nonlinear equations describing the stress–strain state of flexible current-carrying plates in nonstationary mechanical and electromagnetic fields is derived. The stress state of a flexible plate of variable stiffness in a magnetic field is determined  相似文献   

14.
基于磁场摄动技术和广义变分原理得到的磁力公式,对铁磁梁式板在斜磁场作用下的磁场和磁力摄动展开研究.给出了考虑磁场端部效应情形时铁磁梁式板的摄动磁场及其磁力摄动表达式,使得解析分析斜磁场作用下铁磁梁式板磁弹性耦合问题成为可能.研究表明:只有考虑了磁场端部效应的斜磁场磁力摄动公式才能模拟铁磁结构的弯曲模式且能够定性揭示铁磁简支梁式板弯曲构形为双半波形.  相似文献   

15.
As a results of magnetoelastic interaction, the mechanical behavior of current-carrying coil structures, such as deformation and instability, is a key problem in the design of strong field magnets. In this paper, a nonlinear mathematical model is presented to described the deformation and buckling of D-type current-carrying coil, based on the Biot-Savart law and the bending theory of curved beams. The bending deformation, the critical value of current for the magnetoelastic buckling of the current-carrying coil, and the effect of the type and number of supports at middle part of the bendling coil on the critical value are quantitatively investigated by a semi-analytical and semi-numerical method. The numerical results are shown to be in good agreement with the experimental data. The project supported by the National Natural Science Foundation of China, the Science Foundation of the State Education Committee of China for Outstanding Teacher in Universities, and the Natural Science Foundation of Gansu Province of China  相似文献   

16.
Of interest here is the stability of a rectangular block subjected to a uniform magnetic field perpendicular to its longitudinal axis. The two ends of the block are frictionless and kept parallel to each other. This boundary value problem is motivated by the classical problem of magnetoelastic buckling in which a cantilever beam subjected to a transverse magnetic field buckles when the applied field reaches a critical value.This work presents a finite strain continuum mechanics formulation of the stability problem of a homogeneous, compressible, magnetoelastic rectangular block in plane strain subjected to a uniform transverse magnetic field. The applied variational approach employs an unconstrained energy minimization recently proposed by the authors.The analytical solution for the critical buckling fields for both the antisymmetric and symmetric modes are obtained for three different constitutive laws. The corresponding result for thin beams is extracted asymptotically for a special material and the solution is compared to previously published results. The critical magnetic field is shown to increase monotonically with the block's aspect ratio for each material and mode type. Antisymmetric modes are always the critical buckling modes for stress saturated and neo-Hookean materials, except for a narrow range of moderate aspect ratios (about 0.25) where symmetric modes become critical. For strain-saturated solids no buckling is possible above a maximum aspect ratio.  相似文献   

17.
In this paper, the magnetoelastic coupling effect in an infinite soft ferromagnetic material with a crack is analyzed. The nonlinear effect of magnetic field upon stress and the effect of the deformed crack configuration are taken into consideration. The coupling field is determined in the deformed configuration by regarding the deformed crack as an elliptical cylinder with its geometric coefficients, which are determined from a set of algebraic equations deduced from the displacements. The magnetic and stress fields near the crack tip are discussed for the case where both of the magnetic loading and the mechanical tension are present.  相似文献   

18.
The key to revealing the behaviors of magnetoelastic interaction is how to express themagnetic forces applying on a ferronqagnetic elastic body.In this paper,a functional for a ferromag-netic thin plate in magnetic fields is proposed by taking the summation of the magnetic energy of themagnetic system and the strain energy of the elastic plates.We present a variational principle for theproblem by choosing the variations of magnetic potential and deflection as independent variates eachother.Based on the principle,not only are the simultancous governing equations for magnetic fieldsand deformation of structures deduced,but also a general expression of magnetic force acting on theplates is gained,which makes it possible to commonly simulate the distinct two experiments of magne-toelastic interaction in a theoretical model.Thus,it can be used to theoretical prediction of the magne-toelastic interaction of ferromagnetic plates in a complex environment of applied magnetic fields.  相似文献   

19.
In this paper the equations governing the deformations of infinitesimal (incremental) disturbances superimposed on finite static deformation fields involving magnetic and elastic interactions are presented. The coupling between the equations of mechanical equilibrium and Maxwell’s equations complicates the incremental formulation and particular attention is therefore paid to the derivation of the incremental equations, of the tensors of magnetoelastic moduli and of the incremental boundary conditions at a magnetoelastic/vacuum interface. The problem of surface stability for a solid half-space under plane strain with a magnetic field normal to its surface is used to illustrate the general results. The analysis involved leads to the simultaneous resolution of a bicubic and vanishing of a 7×7 determinant. In order to provide specific demonstration of the effect of the magnetic field, the material model is specialized to that of a “magnetoelastic Mooney–Rivlin solid”. Depending on the magnitudes of the magnetic field and the magnetoelastic coupling parameters, this shows that the half-space may become either more stable or less stable than in the absence of a magnetic field.   相似文献   

20.
生帝  胡宇达 《力学季刊》2019,40(4):753-761
研究在外激励力与磁场作用下轴向运动铁磁梁的磁弹性非线性主共振问题.基于弹性理论和电磁理论,给出梁的动能和弹性势能表达式,根据哈密顿原理,推导出磁场中轴向运动铁磁梁的磁弹性双向耦合非线性振动方程.通过伽辽金积分法进行离散,得出两端简支边界条件下铁磁梁磁弹性非线性强迫振动方程.应用多尺度法对方程进行求解,得出幅频响应方程.最后通过算例,给出铁磁梁的幅频特性曲线、振幅-磁感应强度和振幅-外激励力曲线并进行分析.结果显示,在幅频响应曲线中铁磁梁的轴向运动速度、外激励力、轴向拉力越大,共振振幅越大;而磁感应强度越大,振幅越小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号