首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A silver ion-selective electrode was prepared with a polymeric membrane incorporating 2,6-bis-methylsulfanyl-[1,3,5]thiadiazine-4-thione as an ionophore, tri-n-butylphosphate (TBP) as a plasticizer and sodium tetraphenylborate (NaTPB) as an additive. The electrode exhibited a near-Nernstian response of 52 mV/decade over a wide linear concentration range of 1.0 x 10(-5) - 1.0 x 10(-1) M with a lower detection limit of 9.77 x 10(-6) M. The electrode exhibited excellent selectivity for silver ion over many of the alkali, alkaline-earth and transition metal ions. The electrode worked well over a wide pH range of 1.77 - 7.13. The response time of the electrode was less than 20 s. The sensor can be applied as indicator electrode for the potentiometric titration of Ag+ ions with Cl- ions.  相似文献   

2.
A highly selective PVC membrane electrode based on a cerium-salen complex was prepared. The sensor displays an anti-Hofmeister selectivity sequence with a preference for iodide ion over many common organic and inorganic anions. The proposed electrode exhibits a near-Nernstian behavior over a wide concentration range (5.0 x 10(-2) - 8.0 x 10(-6) M) with a slope of 57.5 mV per decade, and a detection limit of 6.0 x 10(-6) M. The electrode has a very fast response time and can be used in the pH range of 3.0 - 1 1.0. It was applied, as an indicator electrode, in potentiometric titration of Ag+ ions.  相似文献   

3.
Silver ion-selective electrodes were prepared with polymeric membranes based on two calix[4]arene derivatives functionalized by two hydroxy and two benzothiazolylthioethoxy groups. The electrodes all gave a good Nernstian response of 58mV decade(-1) for silver in the activity range 5 x 10(-6)-10(-1) M, the limits of detection reached 10(-5.8) M and exhibited high selectivity towards alkali, alkaline earth and some transition metal ions. The electrode was used as indicator electrode in titrations of Ag+ with Cl- ion.  相似文献   

4.
A novel membrane coated platinum-wire electrode (MCPWE) based on N,N'-bis(2-thienylmethylene)-1,2-diaminobenzene (BTMD) for highly selective determination of Ag+ ion has been developed. The influences of membrane composition and pH on the potentiometric responses of electrode were investigated. The potentiometric responses are independent of the pH of the test solution in the range of 5.0 - 9.0. The electrode shows a linear response for Ag+ ion over the concentration range of 1.0 x 10(-60 to 1.0 x 10(-1) M with a lower detection limit of 6.0 x 10(-7) M. The electrode possesses a Nernstian slope of 59.7 mV decade(-1) and a fast response time of < or = 17 s and can be used for at least 2 months without any observable deviation. The proposed electrode displayed very good selectivity for Ag+ ion with respect to NH4+ and alkali, alkaline earth and some common transition metal ions. The practical utility of the electrode has been demonstrated by its use as the indicator electrode in the potentiometric titration of an AgNO3 solution with a NaI solution and in determination of the silver content of a developed radiological film.  相似文献   

5.
A new, simple, sensitive, low cost and rapid potentiometric method for direct determination of ultra trace amounts of sodium dodecyl sulfate (SDS) with a new DS(-)-selective electrode is reported. The electrode was prepared by electropolymerization of aniline in acidified DS- ion on the surface of a Pt electrode. The cyclic voltammetry (CV) was used for electropolymerization of polyaniline (PA) in the potential range of -200 to +1000 mV vs. Ag/AgCl. This sensor showed a Nernstian behavior (59.0 +/- 2.3 mV/decade) over a very wide linear range (1.0 x 10(-9)-3.0 x 10(-6) M) with a detection limit of 1.0 x 10(-9) M. The response time of the electrode was 15 s for 1.0 x 10(-7) M of analyte; the electrode can be used for 4 weeks without any major deviation. This electrode can be used in the pH range of 3.5-9.8. The selectivity of electrode to DS- over some organic, inorganic and anionic surfactants was investigated with the fixed primary ion method. The results show that the electrode is highly selective to DS- ion over other ions. The proposed electrode was applied to the determination of DS- in real samples.  相似文献   

6.
A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions.  相似文献   

7.
A PVC-membrane electrode based on a recently synthesized 18-membered macrocyclic diamide is presented. The electrode reveals a Nernstian potentiometric response for Co2+ over a wide concentration range (2.0 x 10(-6)-1.0 x 10(-2) M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for Co2+ over a wide variety of other metal ions, and could be used over a wide pH range (3.0-8.0). The detection limit of the sensor is 6.0 x 10(-7) M. It was successfully applied to the direct determination and potentiometric titration of cobalt ion.  相似文献   

8.
Mahajan RK  Kumar M  Sharma V  Kaur I 《The Analyst》2001,126(4):505-507
A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.  相似文献   

9.
The performance of silver metal complexes with meso-tetraphenylporphyrin ([H2T(4-CH3)]PP) as ionophores for ion-selective electrodes was studied. The electrode exhibited linear response with Nernstian slope of 59.2 +/- 1.0 mV per decade within the concentration range of 1.0 x 10(-7)-1.0 x 10(-1) M silver ions. The limit of detection as determined from the intersection of the extrapolated linear segments of the calibration plot, was 1.0 x 10(-7) M. The response time of the electrode was < 10 s over the entire concentration range. The silver-selective electrode exhibited good selectivity for Ag(I) with respect to alkali, alkaline earth and heavy metal ions. The electrodes could be used at least three months without a considerable divergence in their potential. The electrodes are suitable for use in aqueous solutions in a wide pH range of 3.0-9.0. They were used as indicator electrodes in titration of Ag(I) with sodium iodide solution and were successfully applied to direct determination of silver in real samples.  相似文献   

10.
A new PVC membrane ion selective electrode which is highly selective towards Ni(II) ions was constructed using a Schiff base containing a binaphthyl moiety as the ionophore. The sensor exhibited a good Nernstian response for nickel ions over the concentration range 1.0x10(-1)-5.0x10(-6) M with a lower limit of detection of 1.3x10(-6) M. It has a fast response time and can be used for a period of 4 months with a good reproducibility. The sensor is suitable for use in aqueous solutions in a wide pH range of 3.6-7.4 and works satisfactorily in the presence of 25% (v/v) methanol or ethanol. The sensor shows high selectivity to nickel ions over a wide variety of cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for the direct determination of nickel content in real samples: effluent samples, chocolates and hydrogenated oils.  相似文献   

11.
A highly selective poly(vinyl chloride)-based membrane sensor produced by using N,N-diethyl-N-(4-hydroxy-6-methylpyridin-2-yl)guanidine (GD) as active material is described. The electrode displays Nernstian behavior over the concentration range 7.0 x 10(-5) - 1.0 x 10(-1) M. The detection limit of the electrode is 5.0 x 10(-5) M. The best performance was obtained with the membrane containing 30% PVC, 55% benzyl acetate, 5% GD and 10% oleic acid. The response of the sensor is pH-independent in the range of 3.0 - 7.0. The sensor possesses satisfactory reproducibility, fast response time (< 20 s), and specially excellent discriminating ability for Eu(III) ion with respect to the alkali, alkaline earth, transition and heavy metal ions. The membrane sensor was used as an indicator electrode in potentiometric titration of Eu(III) ion with EDTA. It was also applied in determination of fluoride ions in mouth wash preparations.  相似文献   

12.
A highly La(III) ion-selective PVC membrane sensor based on N'-(1-pyridin-2-ylmethylene)-2-furohydrazide (NPYFH) as an excellent sensing material was successfully developed. The electrode shows a good selectivity for La(III) ion with respect to most common cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor exhibits a wide linear response with slope of 19.2 +/- 0.6 mV per decade over the concentration range of 1.0 x 10(-6) - 1.0 x 10(-1) M, and a detection limit of 7.0 x 10(-7) M of La(III) ions. The sensor response is independent of pH in the range of 3.5-10.0. The proposed electrode was applied as an indicator electrode in potentiometric titration of La(III) ion with EDTA.  相似文献   

13.
The complexation of five recently synthesized hydroxy-thioxanthone derivatives with Al3+ ion was studied in a methanol solution spectrophotometrically, and the stepwise formation constants of the resulting 1:1 and 2:1 (ligand-to-metal) complexes were evaluated. The suitability of the thioxanthone derivatives as neutral ionophores for the preparation of a new Al3+ ion-selective PVC-membrane electrode was investigated, and 1-hydroxy-3-methyl-thiocanthone was selected as the best compound for this purpose. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (2.0 x 10(-2) to 2.0 x 10(-6) M), with a limit of detection of 1.0 x 10(-6) M. It has a very fast response time of about 5 s and can be used for at least 3 months without any considerable divergence in the potentials. The proposed membrane sensor revealed very good selectivities for Al3+ over a wide variety of other metal ions, and could be used at a working pH range of 3.4 - 5.0. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA, and in the determination of Al3+ in different real samples.  相似文献   

14.
A PVC membrane electrode for lead ions based on phenyl disulfide as the membrane carrier was developed. The electrode exhibits a good Nernstian slope of 29.3 +/- 0.7 mV/decade and a linear range of 2.0 x 10(-6)-1.0 x 10(-2) M for Pb(NO3)2. The limit of detection is 1.2 x 10(-6) M. It has a response time of 45 s and can be used for at least fifty days without any divergence in potential. The proposed membrane sensor revealed high selectivity for Pb2+ over a wide variety of other metal ions and could be used in the pH range of 3.5-6.3. The electrode was used as an indicator electrode in potentiometric titration of lead ions.  相似文献   

15.
A PVC membrane electrode for aluminium ion based on bis(5-phenyl azo salicylaldehyde) 2,3-naphthalene diimine (5PHAZOSALNPHN) as an ion carrier was developed. The electrode exhibits a Nernstian slope of 19.3+/-0.8 mV per decade and a linear range of 5.0x10(-6)-1.0x10(-2) M for Al(NO(3))(3). The limit of detection is 2.5x10(-6) M. It has a fast response time of about 10 s and can be used for at least 10 weeks without observing any deviation. The proposed membrane sensor revealed good selectivity for Al(3+) over a wide variety of other metal ions and could be used in pH range of 2.9-5.0. It was used as an indicator electrode in potentiometric titration of aluminium ion.  相似文献   

16.
Cadmium ion-selective electrode based on tetrathia-12-crown-4   总被引:1,自引:0,他引:1  
Shamsipur M  Mashhadizadeh MH 《Talanta》2001,53(5):1065-1071
A new polyvinylchloride membrane sensor for Cd(2+) ions based on tetrathia-12-crown-4 as an ionophore was prepared. The sensor exhibits a Nernstian response for cadmium ions over a wide concentration range (4.0 x 10(-7) to 1.0 x 10(-1) M) with a slope of 29+/-1 mV decade(-1). The limit of detection is 1.0 x 10(-7) M (0.01 ppm). It has a fast response time of <10 s and can be used for at least 6 weeks without any divergence in potential. The electrode can be used in the pH range from 2.5 to 8.5. The proposed sensor shows fairly good discriminating ability towards Cd(2+) ion in comparison with some alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for the direct determination of Cd(2+) in solution and, as an indicator electrode, in potentiometric titration of cadmium ions.  相似文献   

17.
A sulfate ion-selective PVC membrane sensor based on 4-(4-bromophenyl)-2,6-diphenylpyrilium perchlorate (BDPP) as a novel sensing material is successfully developed. The electrode shows a good selectivity for sulfate ion with respect to common organic and inorganic anions. The sensor exhibits a good linear response with slope of -28.9+/-0.5 mV per decade over the concentration range of 1.0x10(-6)-1.0x10(-2) M, and a detection limit of 8.0x10(-7) M of SO(4)(2-) ions. The electrode response is independent of pH in the range of 4.0-9.0. The proposed sensor was applied as an indicator electrode in potentiometric titration of sulfate and barium ions, and to the determination of zinc in zinc sulfate tablets.  相似文献   

18.
A coated-wire ion-selective electrode (CWISE), based on a Schiff base as a neutral carrier, was successfully developed for the detection of Pb(II) in aqueous solution. CWISE exhibited a linear response with a Nernstian slope of 29.4 +/- 0.5 mV/decade within the concentration range of 1.0 x 10(-5) - 1.0 x 10(-1) M lead ion. CWISE has shown detection limits of 5.0 x 10(-6) M. The electrode exhibited good selectivity over a number of alkali, alkaline earth, transition and heavy metal ions. This sensor yielded a steady potential within 10 to 20 s at a linear dynamic range. The electrode was suitable for use in aqueous solutions in a pH range of 2.0 to 5.0. Applications of this electrode for the determination of lead in real samples and as indicator electrode for potentiometric titration of Pb2+ ion using K2CrO4 are reported.  相似文献   

19.
The preparation of a lead-selective electrode based on bis(1'-hydroxy-2'-acetonaphthone)-2,2'-diiminodiethylamine (L) as sensing material is reported. The plasticized PVC membrane containing 30% PVC, 67% ortho-nitrophenyloctylether (NPOE) and 3% ionophore L was directly coated on a graphite rod. This electrode exhibits a nearly Nernstian slope of 27.8+/-0.2 mV decade(-1) over a concentration range 10(-6)-10(-2) M with a detection limit of 4.0 x 10(-7) M. The response time of the electrode was found to be <20 s. The potential of the sensor was independent on pH variations in the range 5-7. The selectivity of the electrode towards lead ions over Na+, K+, Ag+, Ca2+, Sr2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, La3+, Sm3+ and Er3+ ions was investigated. The prepared electrode was successfully used as an indicator for titration of a lead solution with a standard solution of EDTA. The applicability of the sensor for Pb2+ measurement in various synthetic and real samples has been also demonstrated.  相似文献   

20.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on an N,N'-ethylene-bis(4-methyl-salicylidineiminato) nickel(II) [Ni(EBMSI)] complex as a carrier for a thiocyanate-selective electrode is reported. The influences of the membrane composition, pH and possible interfering anions were investigated based on the response properties of the electrode. The electrode exhibited a good Nernstian slope of -58.9 +/- 0.7 mV decade(-1), over a wide pH range of 3.5 - 8.5 and a linear range of 1.0 x 10(-6) - 1.0 x 10(-1) M for thiocyanate. The detection limit of electrode was 3.1 x 10(-7) M SCN(-). The selectivity coefficients determined by a fixed interference method (FIM) indicate that a good discriminating ability towards the SCN- ion compared to other anions. The proposed sensor had a fast response time of about 5 - 15 s and could be used for at least 3 months without any considerable divergence in the potential. It was applied as an indicator electrode in the titration of thiocyanate with Ag+ and in the potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号