首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

2.
High‐performance electrical double‐layer capacitors (EDLCs) require carbon electrode materials with high specific surface area, short ion‐diffusion pathways, and outstanding electrical conductivity. Herein, a general approach combing the molten‐salt method and chemical activation to prepare N‐doped carbon nanosheets with high surface area (654 m2 g?1) and adjustable porous structure is presented. Owing to their structural features, the N‐doped carbon nanosheets exhibited superior capacitive performance, demonstrated by a maximum capacitance of 243 F g?1 (area‐normalized capacitance up to 37 μF cm?2) at a current density of 0.5 A g?1 in aqueous electrolyte, high rate capability (179 F g?1 at 20 A g?1), and excellent cycle stability. This method provides a new route to prepare porous and heteroatom‐doped carbon nanosheets for high‐performance EDLCs, which could also be extended to other polymer precursors and even waste biomass.  相似文献   

3.
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g?1 (91.7 mF cm?2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg?1 and a power density of 81 kW kg?1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g?1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.  相似文献   

4.
Composition‐tailored Mn1?xRuxO2 2 D nanosheets and their reassembled nanocomposites with mesoporous stacking structure are synthesized by a soft‐chemical exfoliation reaction and the subsequent reassembling of the exfoliated nanosheets with Li+ cations, respectively. The tailoring of the chemical compositions of the exfoliated Mn1?xRuxO2 2 D nanosheets and their lithiated nanocomposites can be achieved by adopting the Ru‐substituted layered manganese oxides as host materials for exfoliation reaction. Upon the exfoliation–reassembling process, the substituted ruthenium ions remain stabilized in the layered Mn1?xRuxO2 lattice with mixed Ru3+/Ru4+ oxidation state. The reassembled Li–Mn1?xRuxO2 nanocomposites show promising pseudocapacitance performance with large specific capacitances of approximately 330 F g?1 for the second cycle and approximately 360 F g?1 for the 500th cycle and excellent cyclability, which are superior to those of the unsubstituted Li–MnO2 homologue and many other MnO2‐based materials. Electrochemical impedance spectroscopy analysis provides strong evidence for the enhancement of the electrical conductivity of 2 D nanostructured manganese oxide upon Ru substitution, which is mainly responsible for the excellent electrode performance of Li–Mn1?xRuxO2 nanocomposites. The results underscore the powerful role of the composition‐controllable metal oxide 2 D nanosheets as building blocks for exploring efficient electrode materials.  相似文献   

5.
Graphene aerogels (GA), prepared with an organic sol–gel process, possessing a high specific surface area of 793 m2 g?1, a high pore volume of 3 cm3 g?1, and a large average pore size of 17 nm, were applied as a support for manganese oxide for supercapacitor applications. The manganese oxide was electrochemically deposited into the highly porous GA to form MnO2/GA composites. The composites, at a high manganese oxide loading of 61 wt. %, exhibited a high specific capacitance of 410 F g?1 at 2 mV s?1. More importantly, the high rate specific capacitances measured at 1000 mV s?1 for these composites were two‐fold higher than those obtained with samples prepared in the absence of the GA support. The specific capacitance retention ratio, based on the specific capacitance obtained at 25 mV s?1, was maintained high, at 85 %, even at the high scan rate of 1000 mV s?1, in contrast with the significantly lower value of 67 % for the plain manganese oxide sample. For the cycling stability, the specific capacitance of the composite electrode decayed by only 5 % after 50,000 cycles at 1000 mV s?1. The success of this MnO2/GA composite may be attributed to the structural advantages of high specific surface areas, high pore volumes, large pore sizes, and three‐dimensionally well‐connected network of the GA support. These structural advantages made possible the high mass loading of the active material, manganese oxide, large amounts of electroactive surfaces for the superficial redox events, fast mass‐transfer within the porous structure, and well‐connected conductive paths for the involved charge transport.  相似文献   

6.
Two‐dimensional hexagonal boron carbon nitride (BCN) nanosheets (NSs) were synthesized by new approach in which a mixture of glucose and an adduct of boric acid (H3BO3) and urea (NH2CONH2) is heated at 900 °C. The method is green, scalable and gives a high yield of BCN NSs with average size of about 1 μm and thickness of about 13 nm. Structural characterization of the as‐synthesized material was carried out by several techniques, and its energy‐storage properties were evaluated electrochemically. The material showed excellent capacitive behaviour with a specific capacitance as high as 244 F g?1 at a current density of 1 A g?1. The material retains up to 96 % of its initial capacity after 3000 cycles at a current density of 5 A g?1.  相似文献   

7.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

8.
Mesoporous manganese oxides (MnO2) were synthesized via a facile chemical deposition strategy. Three kinds of basic precipitants including sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were employed to adjust the microstructures and surface morphologies of MnO2 materials. The obtained MnO2 materials display different microstructures. Great differences are observed in their specific surface area and porosity properties. The microstructures and surface morphologies characteristics of MnO2 materials largely determine their pseudocapacitive behavior for supercapacitors. The MnO2 prepared with Na2CO3 precipitant exhibits the optimal microstructures and surface morphologies compared with the other two samples, contributing to their best electrochemical performances for supercapacitors when conducted either in the single electrode tests or in the capacitor measurements. The optimal MnO2 electrode exhibits a high specific capacitance (173 F g–1 at 0.25 A g?1), high-rate capability (123 F g?1 at 4 A g?1), and excellent cyclic stability (no capacitance loss after 5,000 cycles at 1 A g?1). The optimal activated carbon//MnO2 hybrid capacitor exhibits a wide working voltage (1.8 V), high-power and high-energy densities (1,734 W kg?1 and 20.9 Wh kg?1), and excellent cycling behavior (93.8 % capacitance retention after 10,000 cycles at 1 A g?1), indicating the promising applications of the easily fabricated mesoporous MnO2 for supercapacitors.  相似文献   

9.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

10.
This article reported the electrochemical performance of a novel cabon microsphere/MnO2 nanosheets (CMS/MnO2) composite prepared by a in situ self-limiting deposition method under hydrothermal condition. The results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that MnO2 nanosheets homogeneously grew onto the surface of CMS to form a loose-packed and dandelion-like core/shell microstructure. The unique microstructure plays a basic role in electrochemical accessibility of electrolyte to MnO2 active material and a fast diffusion rate within the redox phase. The results of cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrometry indicated that the prepared CMS/MnO2 composite presented high capacitance of 181 F·g−1 and long cycle life of 61% capacity retention after 2000 charge/discharge cycles in 1 mol/L Na2SO4 solution, which show strong promise for high-rate electrochemical capacitive energy storage applications.  相似文献   

11.
The present work is about the preparation of silver (Ag)-doped manganese oxide (MnO2)/graphene oxide (GO) composite thin films are deposited by a facile and binder-free successive ionic layer adsorption and reaction (SILAR) method for the first time. The Brunauer-Emmett-Teller (BET) study revealed the nanosheets of MnO2–Ag3/GO exhibit high specific surface area of 192 m2 g?1. The tailored flower-like morphology and interconnected nanosheets of MnO2–Ag3/GO electrodes achieved high electrochemical performance. The maximum specific capacitance (Cs) of 877 F g?1 at the scan rate of 5 mV s?1 is obtained for MnO2–Ag3/GO electrode tested in 1 M sodium sulfate (Na2SO4) electrolyte with capacity retention of 94.57% after 5000 cycling stability. The MnO2–Ag3/GO composite-based flexible solid state symmetric supercapacitor (FSS-SSC) device delivered Cs as 164 F g?1 with specific energy of 57 Wh kg?1 at specific power of 1.6 kW kg?1 and capacitive retention of 94% after 10,000 cycles.  相似文献   

12.
Highly dispersed Ni nanoparticles (NPs) and abundant functional N‐species were integrated into ultrathin carbon nanosheets by using a facile and economical sol–gel route. Embedded‐ and anchored‐type configurations were achieved for the dispersion of Ni NPs in/on N‐rich carbon nanosheets. The anchored‐type composite exhibited outstanding pseudocapacitance of 2200 F g?1 at 5 A g?1 with unusual rate capability and extraordinary cyclic stability over 20 000 cycles with little capacitance decay. Aqueous asymmetric supercapacitors fabricated with this composite cathode demonstrated a high energy density of 51.3 Wh kg?1 at a relatively large power density of 421.6 W kg?1, along with outstanding cyclic stability. This approach opens an attractive direction for enhancing the electrochemical performances of metal‐based supercapacitors and can be generalized to design high‐performance energy‐storage devices.  相似文献   

13.
Porous network-like MnO2 thick films are successfully synthesized on a flexible stainless steel (SS) mesh using a simple and low-cost electrodeposition method followed by an electrochemical activation process. Morphology, chemical composition, and crystal structure of the prepared electrodes before and after the activation process are determined and compared by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The results show that the implementation of the electrochemical activation process does not change the chemical composition and crystal structure of the films, but it influences the surface morphology of the MnO2 thick layer to a flaky nanostructure. Based on the electrochemical data analysis, the maximum specific capacitance of 1400 mF (381 F g?1) and 3700 mF (352 F g?1) are measured for small (2.6 cm2) and large (10 cm2) surface area electrodes, respectively. In addition, a flexible symmetric MnO2//MnO2 solid-state supercapacitor shows a capacitance of 0.3 F with about 98% retention at different bending angles from 0 to 360°.  相似文献   

14.
MnO2 films grown on nickel foam (NF) with a desirable 3D structure are investigated as electrochemical pseudocapacitor materials for potential energy storage applications. The prepared MnO2 films are characterized by X-ray diffraction, FT-IR and scanning electron microscopy. Results indicate that the products are typical hexagonal ?-MnO2 with a uniform nanorod structure. The electrochemical measurements showed that the MnO2 films with rods-like morphology have excellent electrochemical performances and its specific capacitance value as single electrode is up to 664 F g?1 at a discharge current density of 5.5 A g?1, which is higher than that of most reported corresponding materials. The specific capacitance retention ratio is 76.7% at the current density range from 5.5 to 30 A g?1. Furthermore, we found that the deposition conditions such as deposition potential and deposition mass have a pronounced effect on their electrochemical activities.  相似文献   

15.
Multifunctional graphene hydrogels have attracted great attention aimed at practical applications. Herein, the novel and bifunctional composite hydrogel containing reduced graphene‐oxide nanosheets (RGO) and V2O5 nanobelts (RGO/V2O5) is successfully prepared for the first time. Surprisingly, tridimensional (3D) RGO/V2O5 composite hydrogels cannot only be used as high‐performance electromagnetic (EM) wave absorbents; they also exhibit excellent properties suitable for supercapacitor electrodes. The composites exhibit a maximum absorption of up to ?21.5 dB. In particular, a composite hydrogel showed a bandwidth of 6.63 GHz, corresponding to a reflection loss at ?10 dB, which opens the possibility for the use of 3D graphene with other functional nanomaterials as lightweight and high‐performance EM wave absorption materials. Remarkably, the composite hydrogel is capable of delivering a high specific capacitance of about 320 F g?1 at a current density of 1.0 A g?1.  相似文献   

16.
Nickel oxide/expanded graphite (NiO/EG) nanocomposites with different loading of EG were prepared through chemically depositing Ni(OH)2 in EG followed by thermal annealing and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Brunauer–Emmet–Teller (BET) isotherm and electrochemical measurements. The prepared NiO/EG composites were found to be crystalline and highly porous with high specific surface area and pore volume. SEM analysis reveals uniform porous morphology for NiO in the NiO/EG-60 nanocomposites which shows good specific capacitance (510?F?g?1) at a current density of 100?mA?g?1 in 6?mol?L?1 KOH measured by chronopotentiometry employing a three-electrode system. The specific capacitance retention of the NiO/EG-60 nanocomposites was found to be ca. 95% after 500 continuous galvanostatic charge–discharge cycles, indicating that the NiO/EG nanocomposites can become promising electro-active materials for supercapacitor application.  相似文献   

17.
Mesoporous silica KIT-6 has novel three-dimensional gyroidal channel structure, space group of 1a-3d, and ordered tunable pores up to 10 nm. In this paper, such mesostructured silica was employed as hard template to prepare semicrystalline gyroidal mesoporous MnO2. The structure was investigated by XRD, TEM and HRTEM, and found to be of high quality 1a-3d symmetry, in good accordance with the template structure. The material has a BET surface of 118 m2·g^-1 and pore volume of 0.35 cm3·g^- 1 after eliminating template. Mesoporous MnO2 has shown good electrochemical property as supercapacitor material in 1 mol·L^-1 Na2SO4 and 1 mol·L^-1 LiClO4 solutions, but interesting pseudocapacitance behavior was observed in the case of 6 mol·L^-1 KOH. It was found that mesoporous MnO2 performed stable reversible electrochemical behavior with capacitance of 220 F·g^-1 in a potential range of -0.1-0.55 V vs. Hg/HgO in alkaline solution, demonstrating that it is a promising novel electrode material for the fabrication of electrochemical capacitors.  相似文献   

18.
Lithium–sulfur batteries have been investigated as promising electrochemical‐energy storage systems owing to their high theoretical energy density. Sulfur‐based cathodes must not only be highly conductive to enhance the utilization of sulfur, but also effectively confine polysulfides to mitigate their dissolution. A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers (HCFs) filled with MnO2 nanosheets. Benefiting from both the HCFs and birnessite‐type MnO2 nanosheets, the MnO2@HCF hybrid host not only facilitates electron and ion transfer during the redox reactions, but also efficiently prevents polysulfide dissolution. With a high sulfur content of 71 wt % in the composite and an areal sulfur mass loading of 3.5 mg cm?2 in the electrode, the MnO2@HCF/S electrode delivered a specific capacity of 1161 mAh g?1 (4.1 mAh cm?2) at 0.05 C and maintained a stable cycling performance at 0.5 C over 300 cycles.  相似文献   

19.
Three‐dimensional, vertically aligned MnO/nitrogen‐doped graphene (3D MnO/N‐Gr) walls were prepared through facile solution‐phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross‐links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as‐prepared 3D MnO/N‐Gr hybirdes provide a large surface area (91.516 m2 g?1) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g?1 at 0.25 A g?1 and an excellent charge/discharge stability (93.7 % capacity retention after 8000 cycles) in aqueous 1 m Na2SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N‐Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg?1 and a power density of 437.5 W kg?1.  相似文献   

20.
Two‐dimensional (2D) nanomaterials are one of the most promising types of candidates for energy‐storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt‐/nickel‐based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g?1 at 7.0 A g?1 and 150 mA h g?1 at 10.0 A g?1) and promising cycling performance (404 mA h g?1 after 100 cycles at 0.1 A g?1). Meanwhile, very impressive lithium storage performance is also achieved, which is maintained at 1029 mA h g?1 after 100 cycles at 0.2 A g?1. NiO and NiCo2O4 nanosheets are also successfully prepared through the same synthetic approach, and both deliver very encouraging lithium storage performances. In addition to rechargeable batteries, 2D cobalt‐/nickel‐based hydroxides and oxides are also anticipated to have great potential applications in supercapacitors, electrocatalysis and other energy‐storage‐/‐conversion‐related fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号