首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We experimentally investigate the nucleation of surface nanobubbles on PFDTS-coated silicon as a function of the specific gas dissolved in water. In each case, we restrict ourselves to equilibrium conditions (c = 100%, T(liquid) = T(substrate)). Not only is nanobubble nucleation a strong function of gas type, but there also exists an optimal system temperature of ~35 -40 °C where nucleation is maximized, which is weakly dependent on gas type. We also find that the contact angle is a function of the nanobubble radius of curvature for all gas types investigated. Fitting this data allows us to describe a line tension that is dependent on the type of gas, indicating that the nanobubbles sit on top of adsorbed gas molecules. The average line tension was τ ≈ -0.8 nN.  相似文献   

2.
We report a novel form of the gaseous state at the interface of water and highly oriented pyrolytic graphite (HOPG) that is induced by local supersaturation of gas. Such local supersaturation of gas next to the HOPG substrate can be achieved by (1) displacing an organic liquid with a gentle flow of water, (2) displacing cold water (approximately 0 degrees C) with a gentle flow of warm water (approximately 40 degrees C), or (3) preheating the HOPG substrate to approximately 80 degrees C before exposing it to water at room temperature. In addition to the spherical-cap-shaped nanobubbles reported by many researchers, flat (quasi-two-dimensional, pancake-like) gas layers and nanobubble-flat gas layer composites (spherical-cap-shaped nanobubbles sitting on top of the quasi-two-dimensional gas layers) were detected. These entities disappeared after the system was subjected to a moderate level of degassing (approximately 0.1 atm for 1.5 h), and they did not form when the liquids involved in the aforementioned displacing procedure (to induce local supersaturation of gas) had been predegassed (to approximately 0.1 atm). The stability and some physical properties of these newly found gaseous states are examined.  相似文献   

3.
The aim of this paper is to quantitatively characterize the appearance, stability, density, and shape of surface nanobubbles on hydrophobic surfaces under varying conditions such as temperature and temperature variation, gas type and concentration, surfactants, and surface treatment. The method we adopt is atomic force microscopy (AFM) operated in the tapping mode. In particular, we show (i) that nanobubbles can slide along grooves under the influence of the AFM tip, (ii) that nanobubbles can spontaneously form by substrate heating, allowing for a comparison of the surface topology with and without the nanobubble, (iii) that a water temperature increase leads to a drastic increase in the nanobubble density, (iv) that pressurizing the water with CO2 also leads to a larger nanobubble density, but typically to smaller nanobubbles, (v) that alcohol-cleaning of the surface is crucial for the formation of surface nanobubbles, (vi) that adding 2-butanol as surfactant leads to considerably smaller surface nanobubbles, and (vii) that flushing water over alcohol-covered surfaces strongly enhances the formation of surface nanobubbles.  相似文献   

4.
Nanobubbles at an interface between a hydrophobic solid and water have a wide range of implications, but the evidence for their existence is still being debated. Here we artificially induced nanobubbles on freshly cleaved HOPG substrates in water using the protocol developed previously and subjected the system to moderate levels of degassing (approximately 0.1 atm for 0.5 to 3 h). The AFM images after the partial degassing revealed that some nanobubbles had coalesced and detached from the substrate because of buoyancy, whereas others apparently remained unaffected. The size and spatial distributions of the nanobubbles after the partial degassing suggest that there is a critical size for a nanobubble above which it may grow. The contact angle of water next to nanobubbles (approximately 160 degrees) is much larger than the advancing contact angle of a macroscopic water droplet on the same substrate (approximately 80 degrees) both before and after the partial degassing and concomitant growth and shrinkage of the nanobubbles. The contact angle of a nanobubble also remained unchanged as the nanobubble was moved along the substrate by the AFM tip. The apparent lack of contact angle hysteresis in the nanobubble systems may suggest that the very large contact angle may correspond to a local minimum of the free-energy landscape.  相似文献   

5.
Nanobubbles are expected to dissolve in milliseconds. Experimental evidence of nanobubbles that were stable for days had thus been first received with circumspection. If the large number of experimental confirmations has now made clear that surface nanobubbles could exist, bulk nanobubbles are still subject to debate. When observations are reported, the main problem is to make sure the observed particles are really made of gas. We show that ultrasound is an ideal tool for investigating the existence of bulk nanobubbles: 1) it is sensitive to minute quantities of gas, 2) it allows one to determine the bubble size distribution, 3) it discriminates unambiguously between gaseous and solid/liquid inclusions. To illustrate the efficiency of ultrasonic detection, we performed size measurements of bubbles produced by a commercial nano‐/microbubble generator. No nanobubble was detected with this device. It would be insightful to use ultrasonic detection in experimental situations for which stable nanobubbles were reported.  相似文献   

6.
利用石墨烯液体池技术,将液体水束缚在两层石墨烯之间,实现透射电子显微镜下纳米尺度液相反应的原位动态观察。通过对电子束的精确调控来控制水的辐解和凝结行为:若先在高电子剂量率下辐照液体,我们发现回到低剂量率后一系列纳米气泡在水中有序地析出并发生长大。界面反应是纳米气泡生长的限制因素,且新生的气泡的生长会抑制既有气泡的长大行为。进一步分析表明气泡内的气体处于致密的压缩态,体系内总的分子数随时间近似线性增加。而持续以相对适中的恒定电子剂量率作用,水辐解产生的气泡中又出现纳米水滴的凝结,并重复地长大/消失。该结果对于研究纳米限域环境下气/液界面反应等重要过程具有参考价值,同时有助于深入理解液体透射电镜下电子束效应对实验的影响。  相似文献   

7.
Nanobubble nucleation study is important for understanding the dynamic behavior of nanobubble growth, which is instructive for the nanobubble applications. Benefiting from nanopore fabrication, herein, we fabricated a sub-9 nm SiNX nanopore with the comparable size to nanobubbles at early-stage. The confined nanopore interface serves as a generator for producing nanobubbles by the chemical reaction between NaBH4 and H2O and as an ultra-sensitive sensor for monitoring the H2 nanobubble nucleation process. By carrying out the NaBH4 concentration-dependent experiments, we found the life-time of nanobubbles decreased 250 times and the frequency of nanobubble generation increased 38 times with the NaBH4 concentration increasing from 6 to 100 mM. The long-time equilibrium between gas molecules inward flux and outward flux could prolong the life-time of nanobubbles to hundreds of milliseconds at low NaBH4 concentration. The raw current trace depicted that the transient accumulation and dissolution of cavity occurred during all the life-time of nanobubbles. Therefore, the sub-9 nm SiNX nanopore shows a strong ability for real-time monitoring the nanobubble nucleation at early-stage with high temporal and spatial resolution. This work provides a guide to study the dynamic and stochastic characteristics of nanobubbles.  相似文献   

8.
Weijs JH  Seddon JR  Lohse D 《Chemphyschem》2012,13(8):2197-2204
Using molecular dynamics, we study the nucleation and stability of bulk nanobubble clusters. We study the formation, growth, and final size of bulk nanobubbles. We find that, as long as the bubble-bubble interspacing is small enough, bulk nanobubbles are stable against dissolution. Simple diffusion calculations provide an excellent match with the simulation results, giving insight into the reason for the stability: nanobubbles in a cluster of bulk nanobubbles protect each other from diffusion by a shielding effect.  相似文献   

9.
Gas saturated solutions have attracted great attention in the past two decades with reports of stable nanobubbles in solutions. The fundamental interest focus arises from the surprising stability which opens up a wide range of potential applications where the interactions between particles and nanobubbles are important. Here, we review the current state of knowledge on systems involving both nanobubbles and nanoparticles. As nanoparticles and nanobubbles are found together in many circumstances, particularly those involving applications of nanobubbles, knowledge of these systems is important. This includes examining the formation of nanoparticles from nanobubbles, the nucleation of nanobubbles from nanoparticles, and the interactions between nanobubbles and nanoparticles. It is clear that further work is required to more fully understand these systems, in particular on the problem of nanobubble nucleation and nanobubble–nanoparticle interactions at the submicron scale.  相似文献   

10.
《中国化学快报》2020,31(9):2442-2446
Nanobubble is a rising research field, which attracts more and more attentions due to its potential applications in medical science, catalysis, electrochemistry and etc. To better implement these applications, it is urgent to understand one of the most important mechanisms of nanobubbles, the evolution. However, few attentions have been paid in this aspect because of the methodology difficulties. Here we successfully used dark-field microscopy to study the evolution process of single nanobubbles generated from formic acid dehydrogenation on single Pd-Ag nanoplates. We found some of the nanobubbles in this system can exhibit three distinct states representing different sizes, which can transform among each other. These transitions are not direct but through some intermediate states. Further kinetic analysis reveals complicated mechanisms behind the evolution of single nanobubbles. The results acquired from this study can be applicable to nanobubble systems in general and provide insights into the understanding of mechanisms affecting the stability of nanobubbles and their applications.  相似文献   

11.
In recent years there has been an accumulation of evidence for the existence of nanobubbles on hydrophobic surfaces in water, despite predictions that such small bubbles should rapidly dissolve because of the high internal pressure associated with the interfacial curvature and the resulting increase in gas solubility. Nanobubbles are of interest among surface scientists because of their potential importance in the long-range hydrophobic attraction, microfluidics, and adsorption at hydrophobic surfaces. Here we employ recently developed techniques designed to induce nanobubbles, coupled with high-resolution tapping-mode atomic force microscopy (TM-AFM) to measure some of the physical properties of nanobubbles in a reliable and repeatable manner. We have reproduced the earlier findings reported by Hu and co-workers. We have also studied the effect of a wide range of solutes on the stability and morphology of these deliberately formed nanobubbles, including monovalent and multivalent salts, cationic, anionic, and nonionic surfactants, as well as solution pH. The measured physical properties of these nanobubbles are in broad agreement with those of macroscopic bubbles, with one notable exception: the contact angle. The nanobubble contact angle (measured through the denser aqueous phase) was found to be much larger than the macroscopic contact angle on the same substrate. The larger contact angle results in a larger radius of curvature and a commensurate decrease in the Laplace pressure. These findings provide further evidence that nanobubbles can be formed in water under some conditions. Once formed, these nanobubbles remain on hydrophobic surfaces for hours, and this apparent stability still remains a well-recognized mystery. The implications for sample preparation in surface science and in surface chemistry are discussed.  相似文献   

12.
Combustible gas-gas reactions usually do not occur spontaneously upon mixing without ignition or other triggers to lower the activation energy barrier. Nanobubbles, however, could provide such a possibility in solution under ambient conditions due to high inner pressure and catalytic radicals within their boundary layers. Herein, a tunable gas-gas reaction strategy via bulk nanobubble pathway is developed by tuning the interface charge of one type of bulk nanobubble and promoting its fusion and reaction with another, where the reaction-accompanied size and number concentration change of the bulk nanobubbles and the corresponding thermal effect clearly confirm the occurrence of the nanobubble-based H2/O2 combustion. In addition, abundant radicals can be detected during the reaction, which is considered to be critical to ignite the gas reaction during the fusion of nanobubbles in water at room temperature. Therefore, the nanobubble-based gas-gas reactions provide a safe and efficient pathway to produce energy and synthesize new matter inaccessible under mild or ambient conditions.  相似文献   

13.
Gas bubble formation is a common phenomenon in numerous electrochemical processes, such as water splitting, chloralkaline process, and fuel cells. Many efforts have been made to understand the behaviors of microsized or larger gas bubbles in electrochemical systems in the past few decades. It was not until recent years that the electrochemistry of nanosized gas bubbles (nanobubbles) has begun receiving attention. In this short review, we summarize recent advances in the field of electrochemistry of nanobubbles, ranging from new fundamental understandings of nanobubble behaviors to the development of novel bubble-based applications inspired by the basic research of nanobubble electrochemistry.  相似文献   

14.
It is the aim of this paper to quantitatively characterize the capability of surface nanobubbles for surface cleaning, i.e., removal of nanodimensioned polystyrene particles from the surface. We adopt two types of substrates: plain and nanopatterned (trench/ridge) silicon wafer. The method used to generate nanobubbles on the surfaces is the so-called alcohol-water exchange process (use water to flush a surface that is already covered by alcohol). It is revealed that nanobubbles are generated on both surfaces, and have a remarkably high coverage on the nanopatterns. In particular, we show that nanoparticles are-in the event of nanobubble occurrence-removed efficiently from both surfaces. The result is compared with other bubble-free wet cleaning techniques, i.e., water rinsing, alcohol rinsing, and water-alcohol exchange process (use alcohol to flush a water-covered surface, generating no nanobubbles) which all cause no or very limited removal of nanoparticles. Scanning electron microscopy (SEM) and helium ion microscopy (HIM) are employed for surface inspection. Nanobubble formation and the following nanoparticle removal are monitored with atomic force microscopy (AFM) operated in liquid, allowing for visualization of the two events.  相似文献   

15.
We performed large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction manifested by the formation of nanobubble between nanometer-sized hydrophobic clusters at constrained equilibrium. Particular attention is placed on the tendency of formation and stability of nanobubbles in between model nanoassemblies which are composed of hydrophobic clusters (or patches) embedded in a hydrophilic substrate. On the basis of physical behavior of nanobubble formation, we observed a change from short-range molecular hydrophobic interaction to midrange nanoscopic interaction when the length scale of hydrophobe approaches to about 1 nm. We investigated the behavior of nanobubble formation with several different patterns of nonpolar-site distribution on the nanoassemblies but always keeping a constant ratio of nonpolar to polar monomer sites. Dynamical properties of confined water molecules in between nanoassemblies are also calculated.  相似文献   

16.
In a recently introduced method for nanobubble generation, water is replaced with NaCl solution. It has the same mechanism as alcohol/water exchange: a liquid of higher gas solubility is used to replace one of lower gas solubility. Herein, the opposite process is realized by replacement of saline solutions with water. Interestingly, nanobubbles are also observed by AFM when different concentrations and valences of saline liquids are employed.  相似文献   

17.
Interfacial properties of helium nanobubbles in water at normal conditions have been investigated using large-scale molecular dynamics simulations for systems including over one million atoms. The surface tension of a helium nanobubble is a convex function with respect to the bubble radius, and is estimated to vanish at a critical radius of approximately 1 nm.  相似文献   

18.
Here we demonstrate that nanobubbles can be used as cleaning agents both for the prevention of surface fouling and for defouling surfaces. In particular nanobubbles can be used to remove proteins that are already adsorbed to a surface, as well as for the prevention of nonspecific adsorption of proteins. Nanobubbles were produced on highly oriented pyrolytic graphite (HOPG) surfaces electrochemically and observed by atomic force microscopy (AFM). Nanobubbles produced by electrochemical treatment for 20 s before exposure to bovine serum albumin (BSA) were found to decrease protein coverage by 26-34%. Further, pre-adsorbed protein on a HOPG surface was also removed by formation of electrochemically produced nanobubbles. In AFM images, the coverage of BSA was found to decrease from 100% to 82% after 50 s of electrochemical treatment. The defouling effect of nanobubbles was also investigated using radioactively labeled BSA. The amount of BSA remaining on a stainless steel surface decreased by approximately 20% following 3 min of electrochemical treatment and further cycles of treatment effectively removed more BSA from the surface. In situ observations indicate that the air-water interface of the nanobubble is responsible for the defouling action of nanobubbles.  相似文献   

19.
The dependence of the properties of so-called "surface nanobubbles" at the interface of binary self-assembled monolayers (SAMs) of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) on ultraflat template-stripped gold and water on the surface composition was studied systematically by in situ atomic force microscopy (AFM). The macroscopic water contact angle (θ(macro)) of the SAMs spanned the range between 107° ± 1° and 15° ± 3°. Surface nanobubbles were observed on all SAMs by intermittent contact-mode AFM; their size and contact angle were found to depend on the composition of the SAM. In particular, nanoscopic contact angles θ(nano) < 86° were observed for the first time for hydrophilic surfaces. From fits of the top of the bubble profile to a spherical cap in three dimensions, quantitative estimates of nanobubble height, width, and radius of curvature were obtained. Values of θ(nano) calculated from these data were found to change from 167° ± 3° to 33° ± 58°, when θ(macro) decreased from 107° ± 1° to 37° ± 3°. While the values for θ(nano) significantly exceeded those of θ(macro) for hydrophobic SAMs, which is fully in line with previous reports, this discrepancy became less pronounced and finally vanished for more hydrophilic surfaces.  相似文献   

20.
The hydrogen concentration of solutions supersaturated with hydrogen comprising dissolved hydrogen and hydrogen bubbles obtained through water electrolysis was studied. The rate of decrease in concentration of hydrogen nanobubble diameter below 600 nm and dissolved hydrogen with elapsed time after electrolysis was seemed to be independent of ionic strength and ion type and storage temperature. The concentration of hydrogen nanobubbles (mol dm(-3)) in electrolyzed water decreases with ionic strength, while the total hydrogen concentration remains roughly constant. The hydrogen nanobubble concentration increases in accordance with the nature of ions existing in solution in the following order I- < Br- < Cl- and K+ < Li+ < Na+. It is shown that the ratio of hydrogen nanobubble concentration to total hydrogen concentration of hydrogen in a catholyte strongly depends on the ratio in the supersaturated hydrogen solution near the electrode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号