首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

2.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

3.
4.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

5.
This paper is primarily concerned with the large time behaviour of solutions of the initial boundary value problem $$\begin{gathered} u_t = \Delta \phi (u) - \varphi (x,u)in\Omega \times (0,\infty ) \hfill \\ - \frac{{\partial \phi (u)}}{{\partial \eta }} \in \beta (u)on\partial \Omega \times (0,\infty ) \hfill \\ u(x,0) = u_0 (x)in\Omega . \hfill \\ \end{gathered} $$ Problems of this sort arise in a number of areas of science; for instance, in models for gas or fluid flows in porous media and for the spread of certain biological populations.  相似文献   

6.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

7.
In a bounded domain of the n -dimensional (n?2) space one considers a class of degenerate quasilinear elliptic equations, whose model is the equation $$\sum\limits_{i = 1}^n {\frac{{\partial F}}{{\partial x_i }}} (a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i - 2} u_{x_i } ) = f(x),$$ where x =(x1,..., xr), li?0, mi>1, the function f is summable with some power, the nonnegative continuous function a(u) vanishes at a finite number of points and satisfies \(\frac{{lim}}{{\left| u \right| \to \infty }}a(u) > 0\) . One proves the existence of bounded generalized solutions with a finite integral $$\int\limits_\Omega {\sum\limits_{i = 1}^n {a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i } dx} }$$ of the Dirichlet problem with zero boundary conditions.  相似文献   

8.
Consider the following Bolza problem: $$\begin{gathered} \min \int {h(x,u) dt,} \hfill \\ \dot x = F(x) + uG(x), \hfill \\ \left| u \right| \leqslant 1, x \in \Omega \subset \mathbb{R}^2 , \hfill \\ x(0) = x_0 , x(1) = x_1 . \hfill \\ \end{gathered} $$ We show that, under suitable assumptions onF, G, h, all optimal trajectories are bang-bang. The proof relies on a geometrical approach that works for every smooth two-dimensional manifold. As a corollary, we obtain existence results for nonconvex optimization problems.  相似文献   

9.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

10.
Given aself similar fractal K ? ? n of Hausdorff dimension α>n?2, andc 1>0, we give an easy and explicit construction, using the self similarity properties ofK, of a sequence of closed sets? h such that for every bounded open setΩ?? n and for everyf ∈ L2(Ω) the solutions to $$\left\{ \begin{gathered} - \Delta u_h = f in \Omega \backslash \varepsilon _h \hfill \\ u_h = 0 on \partial (\Omega \backslash \varepsilon _h ) \hfill \\ \end{gathered} \right.$$ converge to the solution of the relaxed Dirichlet boundary value problem $$\left\{ \begin{gathered} - \Delta u + uc_1 \mathcal{H}_{\left| K \right.}^\alpha = f in \Omega \hfill \\ u = 0 on \partial \Omega \hfill \\ \end{gathered} \right.$$ (H α denotes the restriction of the α-dimensional Hausdorff measure toK). The condition α>n?2 is strict.  相似文献   

11.
In this paper,we discuss the problem for the nonlinear Schr(?)dinger equation(?)where Ω is the exterior domain of a compact set in B~n,a_j(u)=O(|u|),b_j(u)=O(|u|)(1≤j≤n),c(u)=O(|u|~2)near u=0.If n≥5,some Sobolev norm of u_0(x)is sufficiently small,under suitableassumptions on smoothnessand and compatibility and the shape of Ω,we get that the problem has aunique global solution u(t,x),with the decay estimate‖u(t,·)‖_(L(?)(Ω))=O(t~(-n/4)),‖u(t,·)‖_(L~4(Ω))=O(t~(-n/4)),t→+∞.  相似文献   

12.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

13.
In this paper we extend the results of Brezis and Nirenberg in [4] to the problem $$\left\{ \begin{gathered} Lu = - D_i (a_{ij} (x)D_j u) = b(x)u^p + f(x,u) in\Omega , \hfill \\ p = (n + 2)/(n - 2) \hfill \\ u > 0 in\Omega , u = 0 \partial \Omega , \hfill \\ \end{gathered} \right.$$ whereL is a uniformly elliptic operator,b(x)≥0,f(x,u) is a lower order perturbation ofu p at infinity. The existence of solutions to (A) is strongly dependent on the behaviour ofa ij (x), b(x) andf(x, u). For example, for any bounded smooth domain Ω, we have \(a_{ij} \left( x \right) \in C\left( {\bar \Omega } \right)\) such thatLu=u p possesses a positive solution inH 0 1 (Ω). We also prove the existence of nonradial solutions to the problem ?Δu=f(|x|, u) in Ω,u>0 in Ωu=0 on ?Ω, Ω=B(0,1). for a class off(r, u).  相似文献   

14.
In this paper,we consider the following chemotaxis model with ratio-dependent logistic reaction term u/t=D▽(▽u-u▽ω/ω)+u(α-bu/ω),(x,t)∈QT,ω/t=βu-δω,(x,t)∈QT,u▽㏑(u/w)·=0,x ∈Ω,0tT,u(x,0)=u0(x)0,x ∈,w(x,0)=w0(x)0,x ∈,It is shown that the solution to the problem exists globally if b+β≥0 and will blow up or quench if b+β0 by means of function transformation and comparison method.Various asymptotic behavior related to different coefficients and initial data is also discussed.  相似文献   

15.
modm. Ifm is natural,a an integer with (a, m)=1 put $$\begin{gathered} {}^om(a): = min\{ h\left| {h \in \mathbb{N},} \right.a^h \equiv 1(modm)\} , \hfill \\ \psi (m): = \max \{ o_m (a)\left| a \right. \in \mathbb{Z},(a,m) = 1\} , \hfill \\ g(m): = \min \{ a\left| {a \in \mathbb{N},(a,m) = 1,o_m (a) = } \right.\psi (m)\} . \hfill \\ \end{gathered} $$ Form prime,g(m) is the least natural primitive root modm. We establish the estimation $$\sum\limits_{m< x} {g(m)<< x^{1 + \varepsilon } .} $$   相似文献   

16.
More work is done to study the explicit, weak and strong implicit difference solution for the first boundary problem of quasilinear parabolic system: $$\begin{gathered} u_t = ( - 1)^{M + 1} A(x,t,u, \cdots ,u_x M - 1)u_x 2M + f(x,t,u, \cdots u_x 2M - 1), \hfill \\ (x,t) \in Q_T = \left| {0< x< l,0< t \leqslant T} \right|, \hfill \\ u_x ^k (0,t) = u_x ^k (l,t) = 0 (k = 0,1, \cdots ,M - 1),0< t \leqslant T, \hfill \\ u(x,0) = \varphi (x),0 \leqslant x \leqslant l, \hfill \\ \end{gathered} $$ whereu, ?, andf arem-dimensional vector valued functions, A is anm×m positively definite matrix, and $u_t = \frac{{\partial u}}{{\partial t}},u_x ^k = \frac{{\partial ^k u}}{{\partial x^k }}$ . For this problem, the convergence of iteration for the general difference schemes is proved.  相似文献   

17.
Let B be a semigroup with the additional relation $$\begin{gathered} xx \Rightarrow x \hfill \\ xyz \Rightarrow xz if x \mathop {CI}\limits_ = z and xy\mathop {CI}\limits_ = z \hfill \\ \end{gathered} $$ B is called aband or anidempotent semigroup [3]. It is shown in this paper that the replacement rules (rewrites) resulting from the axiom of idempotence: $$\forall w \in B.ww = w$$ can be replaced by theNoetherian, confluent, conditional rewrites (i. e. a terminating replacement system having the Church-Rosser-Property): $$\begin{gathered} xx \Rightarrow x \hfill \\ x \Rightarrow xx \hfill \\ \end{gathered} $$ These rewrites are used to obtain a unique normal form for words in B and hence are the basis for a decision procedure for word equality in B. The proof techniques are based uponterm rewriting systems [7] rather than the usual algebraic approach. Alternative and simpler proofs of a result reported earlier by Green and Rees [4] and Gerhardt [6] have been obtained.  相似文献   

18.
The Cauchy problem for the Laplace operator $$\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f(n_k )} \right|}}{k}} \leqslant const\left\| f \right\|1$$ is modified by replacing the Laplace equation by an asymptotic estimate of the form $$\begin{gathered} \Delta u(x,y) = 0, \hfill \\ u(x,0) = f(x),\frac{{\partial u}}{{\partial y}}(x,0) = g(x) \hfill \\ \end{gathered} $$ with a given majoranth, satisfyingh(+0)=0. Thisasymptotic Cauchy problem only requires that the Laplacian decay to zero at the initial submanifold. It turns out that this problem has a solution for smooth enough Cauchy dataf, g, and this smoothness is strictly controlled byh. This gives a new approach to the study of smooth function spaces and harmonic functions with growth restrictions. As an application, a Levinson-type normality theorem for harmonic functions is proved.  相似文献   

19.
In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u(0) - B(u\prime (\eta )) = 0, u\prime (1) = 0 \hfill \\ \end{gathered} \right.$$ and $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u\prime (0) = 0, u(1) + B(u\prime (\eta )) = 0 \hfill \\ \end{gathered} \right.$$ The main tool is the monotone iterative technique. Here, the coefficientq(t) may be singular att = 0,1.  相似文献   

20.
In this paper, we establish some error bounds for the continuous piecewise linear finite element approximation of the following problem: Let Ω be an open set in ? d , withd=1 or 2. GivenT>0,p ∈ (1, ∞),f andu 0; finduK, whereK is a closed convex subset of the Sobolev spaceW 0 1,p (Ω), such that for anyvK $$\begin{gathered} \int\limits_\Omega {u_1 (\upsilon - u) dx + } \int\limits_\Omega {\left| {\nabla u} \right|^{p - 2} } \nabla u \cdot \nabla (\upsilon - u) dx \geqslant \int\limits_\Omega {f(\upsilon - u) dx for} a.e. t \in (0,T], \hfill \\ u = 0 on \partial \Omega \times (0,T] and u(0,x) = u_0 (x) for x \in \Omega . \hfill \\ \end{gathered} $$ We prove error bounds in energy type norms for the fully discrete approximation using the backward Euler time discretisation. In some notable cases, these error bounds converge at the optimal rate with respect to the space discretisation, provided the solutionu is sufficiently regular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号