首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了求解裂隙岩体有自由面非稳定渗流问题,将Darcy定律延拓至整个研究区域,使得潜在溢出边界条件满足Signorini型边界条件,建立了三维裂隙网络非稳定渗流问题的抛物型变分不等式(parabolic variational inequality,PVI)提法,并证明其与偏微分方程(partial differential equation,PDE)提法的等价性,从而将自由面上的流量条件以及潜在溢出边界上的互补条件转化成自然边界条件,降低该问题求解难度。同时给出了基于PVI提法的有限元数值求解方法,通过与交叉裂隙模型理论解的对比分析,证明了该方法的正确性。最后将该方法对含复杂三维裂隙网络的边坡进行非稳定渗流分析,计算结果表明该方法对于复杂裂隙网络求解具有较强的可靠性和适应性。  相似文献   

2.
利用固定网格法分析三维非稳定渗流问题时,将要面对两项积分难题:以自由面及单元表面为边界的空间积分及以自由面为边界的曲面积分。针对常用的任意8结点6平面三维普通单元,提出采用坐标变换及等参变换技术求取空间积分项的精确数值解;至于曲面积分项,建议改用单元非饱和区部分表面作为积分边界,经过坐标变换及等参变换处理积分边界后,利用高斯数值积分可求出曲面积分项的精确数值解。通过一个普通单元及一项均质半无限边界堤坝的实例分析,表明此方法的精确性和稳定性良好。  相似文献   

3.
This paper presents a methodology and solution procedure of the time-dependent body-fitted coordinate (BFC) method for the analysis of transient, three-dimensional groundwater flow problems characterized by free and moving boundaries. The technique consists of numerical grid generation, time-dependent body-fitted coordinate transformation, and application of the finite difference method (FDM) to the transformed partial differential equations. Based on the time-dependent BFC method, a three-dimensional finite-difference computer code, BFC3DGW, was developed and used to solve two unconfined flow problems. The code was verified by comparing numerical results with analytical solutions for a steady-state seepage problem. In order to demonstrate capability of the method in dealing with flow problems with irregular and moving boundary surfaces, an unconfined well-flow problem was solved by the developed code. Difficulties associated with the free and moving irregular boundary have been successfully overcome by employing this method.  相似文献   

4.
建立了非规则区域的有限分析5点格式,增加了有限分析法对不规则边界的适应性。应用所提出的方法对水利工程中常见的有压和无压流动进行了计算,与实验和前人的计算结果相比较,本文的方法都能得到较为满意的结果。本文的计算格式也可以应用到其他非规则区域的计算中。  相似文献   

5.
Free boundary problem of non-steady state seepage flow   总被引:1,自引:0,他引:1  
1VariationalInequalityModelingforNon_SteadyStateCompresibleSeepageFlowofWelTakeacompresiblepumpingwelintheuniformisotropicmed...  相似文献   

6.
A finite difference technique has been developed to study the Newtonian jet swell problem. The streamfunction and vorticity were used as dependent variables to describe the jet flow. The boundary-fitted co-ordinate transformation method was adopted to map the flow geometry into a rectangular domain. The standard finite difference method was then applied for solving the flow equations. The location of the jet free surface was updated by the kinematic boundary condition, and an adjustable parameter was included in the free-surface iteration. We could obtain numerical solutions for the Reynolds number as high as 100, and the differences between the present study and previous finite element simulations on the jet swell ratio are less than 5%.  相似文献   

7.
采用格林公式和基本解推导出直接边界积分方程来求解渗流问题.边界积分方程数值离散基于格林元方法(Green element methond),改进了原方法中压力和压力导数的求解方法,命名为混合边界元方法(Mixed boundary element method).相较于格林元类方法,该方法显式考虑了求解节点的外法向流量值和压力值,并使求得的数值解在求解区域上能够连续,符合实际的物理过程,在不增加额外未知数的情况下提高了计算精度.分析了不同网格类型对模拟计算结果的影响,并对稳定渗流问题、非稳定(瞬态)渗流问题和非稳态问题进行了实例计算,结果显示改进方法提高了计算精度,并对各类渗流问题有较好的适应性.  相似文献   

8.
低渗透煤层气藏中气-水两相不稳定渗流动态分析   总被引:5,自引:4,他引:1  
刘文超  刘曰武 《力学学报》2017,49(4):828-835
针对低渗透煤层渗流问题,考虑启动压力梯度及其引起的动边界和动边界内吸附气解吸作用的渗流模型研究目前仅限于单相流,而更符合实际的气-水两相渗流动边界模型未见报道.本文综合考虑了煤层吸附气的解吸作用、气-水两相渗流、非达西渗流、地层应力敏感等影响因素,进行了低渗透煤层的气-水两相渗流模型研究.采用了试井技术中的"分相处理"方法,修正了两相渗流的综合压缩系数和流度,并基于含气饱和度呈线性递减分布的假设,建立了煤层气藏的气-水两相渗流耦合模型.该数学模型不仅可以描述由于低渗透煤层中渗流存在启动压力梯度而产生的可表征煤层有效动用范围随时间变化的移动边界,还可以描述煤层有效动用范围内吸附气的解吸现象以及吸附气解吸作用所引起的煤层含气饱和度的上升;为了提高模型精度,控制方程还保留了二次压力梯度项.采用了稳定的全隐式有限差分方法进行了模型的数值求解,并验证了数值计算方法的正确性,获得了模型关于瞬时井底压力与压力导数响应的双对数特征曲线,由此分析了各渗流参数的敏感性影响.本文研究结果可为低渗透煤层气藏开发的气-水两相流试井技术提供渗流力学的理论基础.  相似文献   

9.
In this paper, the artificial boundary method is considered for the numerical simulation of the exterior Stokes flow in three dimensions. First, an exact relation between the normal stress and the velocity field is obtained on a spherical artificial boundary. With the relation specified on the artificial boundary, the original problem is reduced to a new one only defined on a finite domain. After that, an variational problem equivalent to the reduced problem is derived. By truncating the series term in the formulation, a sequence of approximate variational problems are obtained, which can then be solved with a suitable finite‐element scheme. Finally, a numerical example is presented to show the performance of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical analysis of the flow pattern in the inlet region of a circular pipe rotating steadily about an axis parallel to its own is presented. Both finite cell and finite element methods are used to analyse the problem and they give qualitatively similar results which show that a swirling fluid motion is induced in the pipe inlet region. The analyses show that the direction of swirl is opposite to that of the pipe rotation when viewed along the flow axis and that its magnitude depends on the speed of pipe rotation and throughflow Reynolds number. Neither numerical analysis predicts the marked upturn in friction factor (or pressure drop) which has been observed experimentally. However, a dependence on the pipe inlet boundary conditions is demonstrated.  相似文献   

11.
Seepage analysis based on the unified unsaturated soil theory   总被引:2,自引:0,他引:2  
The normal use of the finite element method in the analysis of earth and rock-fill dams involves troublesome modifications of the finite element mesh. In the present paper it is pointed out that in problems of steady seepage it is not necessary to determine in the iteration process the entire free surface, but only the elevation of the release point. It is shown by several examples that the proposed method can simplify the seepage analysis to a certain degree, and also give satisfactory results.  相似文献   

12.
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).  相似文献   

13.
Two-dimensional finite element analyses of two types of gate—(i) a conduit gate with pressure flow upstream of the gate and free surface flow downstream of the gate and (ii) a sluice gate with free surfaces both upstream and downstream of the gate—are done using ideal fluid theory. The conduit gate problem is solved using both Φ- and Ψ- formulations. Various methods of satisfying the boundary conditions were tested for both formulations. The ψ-formulation developed in the present study is found to converge faster for flows with Froude numbers less than 4, which are common in sluice gates. The results obtained from the present study are compared with results from analytical and experimental techniques available in the literature. The ψ-formulation developed in the present study is then used to solve the spillway gate problem, for which no analytical solution is available.  相似文献   

14.
Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine finite element space on the subdomain. The local algorithm consists of finding a solution for a given nonlinear problem in the coarse finite element space and a solution for a linear problem in the fine finite element space, then droping the coarse solution of the region near the boundary. By overlapping domain decomposition, the parallel algorithms are obtained. This paper analyzes the error of these algorithms and gets some error estimates which are better than those of the standard finite element method. The numerical experiments are given too. By analyzing and comparing these results, it is shown that these algorithms are correct and high efficient.  相似文献   

15.
比例边界有限元是一种只需在边界上划分网格且无需基本解的半解析方法,能有效处理应力奇异性和无边界问题.论文提出了一种比例边界有限元的二阶灵敏度分析方法,可以准确而高效地求解响应关于参数的二阶梯度.首先通过建立仅需右特征向量的哈密顿矩阵特征灵敏度分析方程,发展了一种改进的比例边界有限元一阶灵敏度分析方法;其次,进一步通过构建二阶哈密顿矩阵特征灵敏度分析方程,并对比例边界有限元系统方程进行一系列二次直接微分,提出了一种半解析形式的比例边界有限元二阶灵敏度分析方法.该方法被应用于线弹性裂纹结构的形状灵敏度分析和不确定性传播分析.最后,给出了两个数值算例验证论文方法的有效性.  相似文献   

16.
A finite element algorithm for solving the Navier-Stokes equations is presented for the analysis of high-speed viscous flows. The algorithm uses triangular elements. The unsteady equations are integrated to steady state with a Runge-Kutta time-marching scheme. A postprocessing artificial dissipation term is introduced to stabilize the computations and to dampen dissipation errors. Numerical results are compared with the calculation of uniform flow on a rectangular region which encounters an embedded oblique shock. A shock/turbulent boundary layer problem is also solved and results are compared with experimental data. It is shown that the postprocessing smoothing term and boundary conditions similar to the finite difference method work well in the present numerical studies.  相似文献   

17.
In the technology of oil recovery the oil production rate can be increased by generation of a vertical sand-filld conductive fracture on the wall of the well. Oil diffuses through the conductive fracture to the well. In this paper the seepage flow and isothermal deformation fields in both the formation and fracture and the oil production rate at the well are studied by modelling the formation as an infinite poroelastic medium saturated with a one-phase compressible fluid. The fracture is treated as a one-dimensional poroelastic medium. Darcy flows are considered in both the formation and fracture. The plane strain condition is imposed. Our solution is obtained numerically by a finite element method based on a variational principle. The accuracy of the analysis is studied by comparison of the numerical solutions of some problems with their analytical solutions. Since we are dealing with the transient flow problem of an infinite region, an extrapolation technique is employed to find the finite element solution. The production rate of a well with the conductive fracture is compared with that of a well without the conductive fracture.  相似文献   

18.
This paper presents a computational simulation method for a river problem. For the actual flow problem, it is necessary to compute flow velocity, water elevation and water region at the same time. For the basic formulation, the unsteady shallow water equations are used. As the numerical approach, implicit FEM is proposed by bubble function. To control numerical stability and accuracy, LSBF (Least-Squares Bubble Function) is used to solve the finite element equations. Also, the fixed boundary technique is combined to deal with wet and dry areas in the moving finite element mesh. Some numerical tests are shown to check this method.  相似文献   

19.
The prediction of the free-surface seepage flow behavior in fractured rock mass is of significance in geotechnical engineering. There are two major issues in solving the seepage flow in complicated fractured rock mass based on the fractured porous medium (FPM) flow model, in which groundwater is assumed to flow simultaneously in both rock matrix and embedded fractures: One is the mesh generation of rock mass in the presence of the fracture network, especially when there exist a large number of stochastic fractures; the other is that a robust iteration algorithm is required since the free surface is unknown at the beginning of solution. Aiming at these two issues, this paper proposes a novel numerical method by coupling radial point interpolation method (RPIM) and finite element method (FEM), in which RPIM is utilized to model the rock matrix and FEM is utilized to model the fractures. On the basis of the variational inequality (VI) theory for free-surface seepage analysis, the computation formulations of the numerical method are derived and the corresponding computation program is developed. Three examples are solved with the present method. It is found that the VI theory can be extended to solve the free-surface seepage problem based on the FPM flow model. A crucial advantage of the present method is that the mesh generation can be greatly simplified. The present method has been verified to be a robust, efficient and reliable method for modeling the groundwater flow in complicated fractured rock mass.  相似文献   

20.
A new finite element procedure called the net inflow method has been developed to simulate time-dependent incompressible viscous flow including moving free surfaces and inertial effects. As a fixed mesh approach with triangular element, the net inflow method can be used to analyse the free surface flow in both regular and irregular domains. Most of the empty elements are excluded from the computational domain, which is adjusted successively to cover the entire region occupied by the liquid. The volume of liquid in a control volume is updated by integrating the net inflow of liquid during each iteration. No additional kinetic equation or material marker needs to be considered. The pressure on the free surface and in the liquid region can be solved explicitly with the continuity equation or implicitly by using the penalty function method. The radial planar free surface flow near a 2D point source and the dam-breaking problem on either a dry bed or a still liquid have been analysed and presented in this paper. The predictions agree very well with available analytical solutions, experimental measurements and/or other numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号