首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transients of the open-circuit potential, which are observed during the interaction of formic acid with preliminarily adsorbed oxygen (Oads) on a Pt/Pt electrode in 0.5 M H2SO4, are measured. It is established, by means of the method of cathodic potentiodynamic pulses, that the slowest interaction of formic acid with Oads occurs in the region of large coverages of the electrode surface by oxygen (θO ∼1–0.8). A presumption is put forward that the process rate in this region is defined by a direct reaction of Oads with molecules of formic acid from the bulk solution. It is shown that the interaction of formic acid with Oads in the region of intermediate coverages (θO ∼ 0.8–0.2) proceeds via a mechanism of “conjugated reactions.” Transients of the open-circuit potential for formic acid are compared to transients for carbon monoxide obtained in analogous conditions. The substantially shorter overall time of potential decay in the case of CO (at the same concentrations) is caused by a faster reaction of CO with adsorbed oxygen in the region of large θO. The difference is explained by assuming that the HCOOH adsorption as opposed to CO bears a dissociative character.__________Translated from Elektrokhimiya, Vol. 41, No. 8, 2005, pp. 936–942.Original Russian Text Copyright © 2005 by Manzhos, Maksimov, Podlovchenko.  相似文献   

2.
Transients of the open-circuit potential, which are observed when formic acid is interacting wit adsorbed oxygen (Oads) preliminarily accumulated on polycrystalline “smooth” platinum (pcPt), are measure in an aqueous solution of sulfuric acid. It is shown that, as with platinized platinum (Pt/Pt), at large coverage by adsorbed oxygen (θO = 1?0.8), adsorbed oxygen interacts directly with molecules of formic acid from solution. In the region of medium coverages (θO = 0.8?0.2), on the other hand, a mechanism of “conjugated reactions” is realized. It is established that, in the case of pcPt, the direct interaction of Oads with molecules of HCOOH from solution proceeds slower by nearly three times and the interaction via the mechanism of “conjugated reactions,” faster by about three times, as compared with Pt/Pt.  相似文献   

3.
The reaction of adsorbed oxygen (Oads) with aliphatic alcohols n-C n H2n + 1OH with n = 2–5 is studied by the method of transients of open-circuit potential in combination with potentiodynamic pulses. It is shown that these alcohols react with Oads by a mechanism the same as for CH3OH. Kinetic parameters of these reactions are determined in ranges of high and medium surface coverages with Oads. These data together with analogous results obtained earlier for CH3OH were studied with the aim of elucidating how the length of the hydrocarbon chain affects the kinetics of interaction of alcohols with Oads. The complex variations of the reaction rate with n (with a maximum) are explained by several factors among which the energy of the C–H bond at α-carbon atom and the degree hydration of alcohols should be singled out.  相似文献   

4.
Variations of potential E in time , observed during the carbon monoxide interaction with preliminarily-adsorbed oxygen Oads on smooth and platinized platinum electrodes under open-circuit conditions (supporting electrolyte 0.5 M H2SO4), are measured. The potential decay rate on smooth Pt is more than ten times that on Pt/Pt; there are some differences in the transients as well. The obtained data suggest that CO interacts with Oads on smooth Pt and Pt/Pt via different mechanisms. Two models for the process on smooth platinum are considered. In one model, the interaction of Oads with CO from solution is accepted as the rate-determining step; in the other, the interaction of Oads with COads. A comparison of theoretical E vs. dependences with experimental data using the MathCad program suggests that CO interacts with Oads via both mechanisms.  相似文献   

5.
The transients of the current and open-circuit potential (OCP) for the B ± ze → Bad process, where Bad is an irreversibly adsorbed atom, are described analytically. The analysis is based on the earlier obtained relationships for variations in the total charge and OCP of a hydrogen electrode during the irreversible adsorption of neutral species. A graphic method of estimating the OCP shifts and integral current transients (Eads = const) corresponding to various surface coverages with Bad is proposed. Dedicated to the ninetieth anniversary of Ya.M. Kolotyrkin’s birth.  相似文献   

6.
Transients of open-circuit potential observed at the reaction of hydrogen molecules with oxygen preliminarily adsorbed (Oads) on the smooth polycrystalline (pc Pt) and platinized platinum (Pt/Pt) electrodes are measured under conditions of controlled stirring of solution (0.5 M H2 SO4). The dependence of the surface coverage with OadsO) on the potential in the cause of the potential decay on pc Pt are determined. It is found that for Pt/Pt, the reaction kinetics is largely determined by diffusion of H2. For pc Pt in the range of high θO, the Eley-Ridiel mechanism is realized. For medium θO, the regions where the reaction obeys the mechanisms of Eley-Ridiel, “conjugated reactions”, and diffusion control are observed to overlap (even at the most intense stirring possible). The rate of H2 reaction with Oads is substantially higher compared with analogous reactions of CO, HCOOH, and CH3OH.  相似文献   

7.
The open circuit potential transients and cathodic potentiodynamic pulses were measured upon formaldehyde (methylene glycol) interaction with pre-adsorbed oxygen (Oads) on Pt/Pt and pc Pt electrodes in aqueous sulfuric acid solutions. The slowest interaction of CH2(OH)2 with Oads was observed in the high coverage range of the electrode surface (θO ~ 0.2 0.8 to 1). The process rate in this range is determined by the direct reaction of Oads with CH2(OH)2 molecules from the bulk solution. In the middle surface oxygen coverage range (θO 0.2 to 0.8), CH2(OH)2 interaction with Oads takes place by the mechanism of “conjugated reactions”. The kinetic parameters of reactions for CH2(OH)2, HCOOH, and CH3 OH were compared. The rate of CH2(OH)2-Oads interaction on Pt electrodes in the high oxygen coverage range was found higher by an order of magnitude than that of HCOOH and by two orders of magnitude than in the case of CH3OH.  相似文献   

8.
The iron dissolution rate, determined earlier by a statistical calculation for low coverages of the surface by specifically adsorbed anions Aads and oxygen atoms Oads under the assumption that the dissolution and passivation processes are separated in space, is shown to be applicable for any coverages by Aads. The calculation agrees with experiment if the short lifetime of Aads (as compared with that of Oads) is taken into account. Dedicated to the ninetieth anniversary of Ya.M. Kolotyrkin’s birth.  相似文献   

9.
Transients of the open-circuit potential observed in the reaction of methanol with oxygen (Oads) preliminarily adsorbed on smooth polycrystalline platinum (pcPt) are measured in 0.05 M HClO4, 0.5 M HClO4, 0.05 M H2SO4, 0.05 M H2SO4 + 0.45 M Na2SO4, and 0.05 M H2SO4 + 0.45 M Cs2SO4. It is shown that the solution pH has a weak effect on the transient characteristics (when the reversible hydrogen electrode potential scale is used). This confirms the chemical nature of rate-controlling stages in the reaction mechanism. The changes in the reaction rate, observed upon going from one electrolyte to another, are preferentially associated with the involvement of solution ions in the formation of activated surface complexes that include CH3OH, Oads, and supporting-electrolyte components.  相似文献   

10.
11.
Transients of the current and open-circuit potential are measured after bringing carbon monoxide in contact with an Rh/Pt electrode in 0.5 M H2SO4 and 1 M HCl solutions. To interpret these transients from positions of theoretical views on the transients of the current and open-circuit potential that were developed previously for the adsorption of neutral species on a hydrogen electrode, curves of dependences of the total electrode charge on the electrode potential are plotted in the presence and absence of chemisorbed CO on the surface. Good agreement of theory with experiment is established. In 1 M H2SO4, values of the potential of a zero total charge (PZTC) in the absence and presence of COads and values of the reverse potential happen to be close, whereas the PZTC in 1 M HCl perceptibly shifts in the positive direction as a result of the CO adsorption, while the reverse potential, conversely, falls in the region of potentials of hydrogen evolution on Rh. As a result of the latter, in 1 M HCl, throughout the entire range of potentials where restrictions of the employed modeling notions are obeyed, in accordance with theory, integrated values of the current transients have only a negative sign, and those of the open-circuit potential transients have only a positive sign.  相似文献   

12.
Transients of potential E during the CO-Oads interaction on Pt/Pt electrodes of different roughness (f = 20-1200), measured in 0.5 M H2SO4 under open-circuit conditions, slow down with increasing f. Dependence of specific activity of Pt/Pt on f cannot be described by one CO-Oads interaction mechanism in a wide range of f. At f < 100, more acceptable is the mechanism suggested earlier for polycrystalline (smooth) Pt, and at larger f—mechanism of conjugated reactions. Presumably, increasing f at small f reduces intrinsic electrocatalytic activity of the Pt surface, while at large f inner-diffusion limitations can arise.  相似文献   

13.
In the present work, results of the interaction between methanol and oxidized platinum surfaces as studied via transients of open-circuit potentials are presented. The surface oxidation before the exposure to interaction with 0.5 M methanol was performed at different polarization times at 1.4 V vs reversible hydrogen electrode (RHE). In spite of the small changes in the initial oxide content, the increase of the pre-polarization time induces a considerable increase of the time needed for the oxide consumption during its interaction with methanol. The influence of the identity of the chemisorbing anion on the transients was also investigated in the following media: 0.1 M HClO4, 0.5 M H2SO4, and 0.5 M H2SO4 + 0.1 mM Cl. It was observed that the transient time increases with the energy of anion chemisorption and, more importantly, without a change in the shape of the transient, meaning that free platinum sites are available at the topmost layer all over the transient and not only in the potential region of small oxide ‘coverage’. The impact of the pre-polarization time and the effect of anion chemisorption on the transients are rationalized in terms of the presence of surface and subsurface oxygen driven by place exchange.
Hamilton VarelaEmail:
  相似文献   

14.
Statistical lattice models which imitate oscillatory and wave dynamics in the adsorbed layer during of carbon monoxide oxidation over Pt(100) and Pd(110) single crystals differing in the mechanism of autooscillation formation are compared. In the case of platinum, oscillations are due to phase transitions of the catalyst surface structure and surface reconstruction under the action of the reaction medium. In the case of palladium, the driving force of oscillations is phase transitions in the adsorbed layers on the catalyst surface, namely, the reversible formation of subsurface oxygen in the course of the reaction, which modifies the adsorption and catalytic properties of the surface. It is shown that, according to the proposed models, a change in the coverages (COads Oads) in the autooscillation regimes occurs via the formation of a surface wave whose front is characterized by the high concentration of catalytically active sites that provide the maximal rate of CO2 molecule formation. Under certain conditions, the formation of various spatiotemporal structures is observed in simulation experiments.  相似文献   

15.
Open-circuit potential transients are measured under the conditions of methanol interaction with the pre-adsorbed oxygen at platinized platinum electrode. The time necessary for complete removal of the adsorbed oxygen monolayer appeared being shorter by a factor of ~1.5 as compared with smooth polycrystalline platinum. The dependence of platinum surface coverage with adsorbed oxygen on the potential during its decay is found. It was shown that the reaction of methanol with the adsorbed oxygen is most slow at a high coverage (1–0.8). It is suggested that at these coverages, like the case of polycrystalline platinum, the adsorbed oxygen directly interacts with the methanol molecules from the solution. At moderate coverages (0.8–0.2), the reaction of the adsorbed oxygen with methanol at the platinized platinum is better described by the “conjugated reactions” mechanism. The specific rates of the methanol dissociative adsorption at the platinized platinum turned out to be close to those observed earlier for the polycrystalline platinum.  相似文献   

16.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

17.
18.
From the analysis of the impedance of nickel deposition, the electrode kinetics is shown to be dependent on the type of anion. In chloride electrolytes a slow electrode activation with cathodic polarization is predominant. In sulfate solutions a low-frequency capacitive feature, favored by a pH decrease, appears to result from interactions between the nickel and hydrogen discharges. An interpretation is proposed where the ad-ion NiadsI acts as both a reaction intermediate and a catalyst associated with a propagating kink site, and where the adsorbed species Hads*, generated by the presence of NiadsI, inhibit the hydrogen evolution. It is concluded that the active area is closely connected to the coverages by adsorbates.  相似文献   

19.
Steady-state polarization curves are compared in solutions of 0.5 M H2SO4 + O2 (saturated), 0.5 M H2SO4 + (0.005–0.1) M CH3OH, and 0.5 M H2SO4 + (0.005–0.1) M CH3OH + O2 (saturated) on a Pt/Pt electrode. A considerable difference is found between the currents in mixed solutions and those expected based on the principle of additivity of currents in CH3OH and O2 individual solutions. The surface coverages with the CH3OH and O2 adsorption products are determined in the potential range of 0.2–0.9 V (RHE). Open-circuit potentials are measured in mixed solutions. The obtained results suggest that the direct heterogeneous interaction between methanol and oxygen occurs alongside with faradaic reactions. This is assumed to lead to a decrease in methanol electrooxidation currents at E ≥ 0.8 V and their increase at E ≤ 0.65 V.  相似文献   

20.
Adsorption and oxidation of dimethyl ether (DME) on the Pt/Pt electrode from 0.5 M H2SO4 is studied by measuring transients of current and potential, charging curves, and curves of electrooxidation in the adsorbed layer and also by cyclic voltammetry and steady-state polarization measurements. The DME adsorption is accompanied by dehydrogenation and destruction of its molecules to form a chemisorbed adsorbate that mainly consists of C1 species (HCOads and/or COads) with (under certain conditions) a small amount of species that desorb at cathodic polarization. The adsorption and electrooxidation of DME are inhibited by adsorbed oxygen. The possible schemes of DME oxidation, where the reaction of DME chemisorption products with adsorbed oxygen-containing species is the limiting stage, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号