首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The coating of TiO(2) particles (P25) by a nanoporous silica layer was conducted to impart molecular recognitive photocatalytic ability. TiO(2)/nanoporous silica core/shell particles with varied pore diameters of the shell were synthesized by the reaction of P25 with an aqueous mixture of tetraethoxysilane and alkyltrimethylammonium chloride with varied alkyl chain lengths, followed by calcination. The TEM and nitrogen adsorption/desorption isotherms of the products showed that a nanoporous silica shell with a thickness of ca. 2nm and controlled pore diameter (1.2, 1.6, and 2.7 nm) was deposited on the titania particle when surfactants with different alkyl chain lengths (C12, C16 and C22) were used. The water vapor adsorption/desorption isotherms of the core/shell particles revealed that a larger amount of water adsorbed on the core/shell particles when the pore diameter is larger. The (29)Si MAS NMR spectra of the core/shell particles showed that the amount of surface silanol groups was independent of the water vapor adsorption capacity of the products. The possible molecular recognitive photocatalysis on the products was investigated under UV irradiation using two kinds of aqueous mixtures containing different organic compounds with varied sizes and functional groups: a 4-butylphenol, 4-hexylphenol, and 4-nonylphenol mixture and a 2-nitrophenol, 2-nitro-4-phenylphenol, and 4-nitro-2,6-diphenylphenol mixture. It was found that the core/shell particles exhibited selective adsorption-driven molecular recognitive photocatalytic decomposition of 4-nonylphenol and 2-nitrophenol in the two mixtures.  相似文献   

2.
Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (St?ber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.  相似文献   

3.
Colloidal FePt nanocrystals, 6 nm in diameter, were synthesized and then coated with silica (SiO2) shells. The silica shell thickness could be varied from 10 to 25 nm. As-made FePt@SiO2 nanocrystals have low magnetocrystalline anisotropy due to a compositionally disordered FePt core. When films of FePt@SiO2 particles are annealed under hydrogen at 650 degrees C or above, the FePt core transforms to the compositionally ordered L1(0) phase, and superparamagnetic blocking temperatures exceeding room temperature are obtained. The SiO2 shell prevents FePt coalescence at annealing temperatures up to approximately 850 degrees C. Annealing under air or nitrogen does not induce the FePt phase transition. The silica shell limits magnetic dipole coupling between the FePt nanocrystals; however, low temperature (5 K) and room temperature magnetization scans show slightly constricted hysteresis loops with coercivities that decrease systematically with decreased shell thickness, possibly resulting from differences in magnetic dipole coupling between particles.  相似文献   

4.
Two-step aqueous polymerizations with a water-soluble initiator of potassium persulfate were conducted to prepare anisotropic composite particles incorporating a silica core smaller than 100 nm. The two-step polymerization consisted of the first polymerization to coat the silica cores with cross-linked polymethylmethacrylate (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) bulge from the core–shell particles. The concentration of ionic comonomer of sodium p-styrenesulfonate (NaSS) in the first polymerization was an important factor to stabilize the core–shell particles during the second polymerization as well as the first one, and an appropriate concentration of NaSS could prepare the anisotropic composite particles incorporating a single core. Another important factor for small, anisotropic composite particles was duration time for swelling the core–shell particles with the second monomer of styrene. Extension of the duration time from 2 to 4 h facilitated protrusion of the PSt bulge from the particles incorporating a 44-nm silica core. The composite particles were also employed to fabricate anisotropic hollow particles. Chemical etching of silica component in the composite particles with hydrofluoric acid successfully created anisotropic hollow polymer particles with a cavity size corresponding to the silica cores.  相似文献   

5.
The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3·3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793 °C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.  相似文献   

6.
A mesoporous Co(3)O(4) core/mesoporous silica shell composite with a variable shell thickness of 10-35 nm was fabricated by depositing silica on Co(3)O(4) superlatticed particles. The Brunauer-Emmett-Teller (BET) surface area of the composite with a shell thickness of ca. 2.0 nm was 238.6 m(2)/g, which varied with the shell thickness, and the most frequent pore size of the shell was ca. 2.0 nm. After the shell was eroded with hydrofluoric acid, mesoporous Co(3)O(4) particles with a pore size of ca. 8.7 nm could be obtained, whose BET surface area was 86.4 m(2)/g. It is proposed that in the formation of the composite the electropositive cetyltrimethylammonium bromide (CTAB) micelles were first adsorbed on the electronegative Co(3)O(4) particle surface, which directed the formation of the mesoporous silica on the Co(3)O(4) particle surface. Electrochemical measurements showed that the core/shell composites exhibited a higher discharge capacity compared with that of the bare Co(3)O(4) particles.  相似文献   

7.
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.  相似文献   

8.
Preparation of silica-polystyrene core-shell particles up to micron sizes   总被引:1,自引:0,他引:1  
A method for producing silica-core composite particles with a polystyrene shell is proposed. Silica particles were prepared by the St?ber method through condensation and hydrolysis of tetraethyl orthosilicate in a water-ethanol-ammonia solution. The silica particles were the surface-modified with a coupling reagent, methacryloxypropyltrimethoxysilane (MPTMS), to introduce vinyl groups onto the particle surfaces. Polymerization of styrene was conducted with an initiator, potassium persulfate (KPS), and an anionic monomer, sodium p-styrenesulfonate (NaSS), in the presence of the silica particles. In these coating experiments, the average size of the silica particles was varied from 339 to 1210 nm with the concentration ranges of MPTMS (0-10 mmol/l), NaSS (0-10 mmol/l), KPS (4-12 mmol/l), and styrene (0.12-0.4 mol/l). Selection of reaction conditions enabled the preparation of composite particles that contained one core of silica. The coefficient of variance of size distribution of the composite particles was less than 7%, and shell thickness was in the range 125 to 410 nm.  相似文献   

9.
The monodisperse hybrid silica particles (h-SiO(2)) were firstly prepared by a modified sol-gel process and the surface was modified in situ with double bonds, then abundant carboxyl moieties were introduced onto the surface of the silica core via thiol-ene click reaction. Afterward, the h-SiO(2)/TiO(2) core/shell microspheres were prepared by hydrolysis of titanium tetrabutoxide (TBOT) via sol-gel process in mixed ethanol/acetonitrile solvent, in which the activity of TBOT could be easily controlled. The carboxyl groups on the surface of silica particles promote the formation of a dense and smooth titania layer under well control, and the layer thickness of titania could be tuned from 12 to 100nm. The well-defined h-SiO(2)/TiO(2) core/shell structures have been confirmed by electron microscopy and X-ray photoelectron spectroscopy studies. After calcination at 500°C for 2h, the amorphous TiO(2) layer turned into anatase titania. These anatase titania-coated silica particles showed good photocatalytic performance in degradation of methyl orange aqueous solution under UV light.  相似文献   

10.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

11.
Nondilute nanoparticle dispersions were stabilized in liquid CO2 at 25 degrees C at pressures as low as the vapor pressure for greater than 30 min. By modifying hydrophilic silica with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxy silane, a cross-linked polymer shell was formed around the silica core. The presence of the shell led to weaker Hamaker interactions between approaching fluoro-silica composite particles and enabled dispersibility at weaker solvent conditions (low pressures) than for metals with larger Hamaker constants. Steric stabilization of the nanoparticles was provided by low-molecular-weight perfluorodecane side chains at the surface of the fluoro-silica composite shell. Compared to polymeric chains, the perfluorodecane side chains are more easily solvated and thus stabilize nanoparticle dispersions in CO2 at much lower pressures, even down to the vapor pressure.  相似文献   

12.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.  相似文献   

14.
Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.  相似文献   

15.
Treatment of Mg–Al hydrotalcites (LDHs, layered double hydroxides) in aqueous (NH4)2CO3 at 298 K leads to composites of dawsonite, hydrotalcite, and magnesium ammonium carbonate. The mechanism and kinetics of this transformation, ultimately determining the relative amounts of these components in the composite, depend on the treatment time (from 1 h to 9 days), the Mg/Al ratio in the hydrotalcite (2-4), and on the starting layered double hydroxide (solid or delaminated form). The materials at various stages of the treatment were characterized by inductive coupled plasma-optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, thermogravimetry, and nitrogen adsorption at 77 K. The progressive transformation of hydrotalcite towards crystalline dawsonite and magnesium ammonium carbonate phases follows a dissolution–precipitation mechanism. A gradual decrease of the Mg/Al ratio in the resulting solids was observed in time due to magnesium leaching in the reacting medium. Dawsonite–hydrotalcite composite formation is favored at high aluminum contents in the starting hydrotalcite, while the formation of magnesium ammonium carbonate is favored at high Mg/Al ratios. The synthetic strategy comprising hydrotalcite delamination in formamide prior to aqueous (NH4)2CO3 treatment is more reactive towards composite formation than starting from the bulk solid hydrotalcite.  相似文献   

16.
Following previous works [1, 2], silica–polystyrene core–shell particles have been synthesized by dispersion polymerization of styrene in an ethanol/water mixture in the presence of a poly(styrene-b-ethylene oxide) block copolymer as stabilizer. Besides the formation of composite core–shell particles, a large number of free latex particles that do not contain silica were also formed. This number decreases as the size of the silica beads decreases from 300 to 29 nm in diameter, and becomes very low compared to the number of composite particles for the smallest silica beads used. In every case, the composite particles could be easily separated from the free latex particles by centrifugation, providing a material made of regular core–shell composite particles. On the basis of the mechanisms involved in dispersion polymerization, hypotheses were formulated to account for the formation of the silica–polystyrene composite particles. Received: 6 May 1999 Accepted in revised form: 29 June 1999  相似文献   

17.
A series of core–shell‐structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM‐5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant‐directed sol–gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15–100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso‐/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4–3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short‐time kinetic diffusion efficiency of benzene molecules within pristine ZSM‐5 (≈7.88×10?19 m2 s?1) is almost retainable after covering with 75 nm‐thick mesoporous silica shells (≈7.25×10?19 m2 s?1), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core–shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol g?1) for large molecules such as 1,3,5‐triisopropylbenzene relative to that of pristine ZSM‐5 (≈0.4 mmol g?1) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core–shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n‐dodecane shows the superiority of the unique core–shell structure over pristine ZSM‐5. Insight into the core–shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes.  相似文献   

18.
以甲基丙烯酸-3-(三甲氧基硅基)丙酯(MPS)修饰的SiO2胶体粒子为种子,甲基丙烯酸叔丁酯(tBMA)为单体、十二烷基硫酸钠(SDS)为乳化剂,采用种子乳液聚合法制备了SiO2/聚甲基丙烯酸叔丁酯的核壳复合微粒。微粒经水解后形成具有pH敏感性的无机/有机复合微粒。研究了影响核壳复合微粒形态结构的因素,结果发现,控制SiO2种子乳液的质量分数在1.5%~2%,可避免聚合过程中生成纯聚甲基丙烯酸叔丁酯乳胶粒子;反应体系中乳化剂SDS的用量超过质量分数0.3%时,易形成纯聚合物乳胶粒子;SDS用量低于质量分数0.15%时,生成的核壳复合微粒易产生团聚;单体和交联剂用量升高,核壳复合微粒的壳层厚度增加,用量过高会导致核壳复合微粒出现团聚现象,并且有纯聚合物乳胶粒子生成。采用TEM、NMR和FTIR及接触角测试技术分析结果表明,复合微粒是由SiO和聚甲基丙烯酸叔丁酯组成的核壳结构微粒。  相似文献   

19.
Hydrotalcites based upon gallium as a replacement for aluminium in hydrotalcite over a Mg/Al ratio of 2:1 to 4:1 were synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. A comparison is made with the Mg/Al hydrotalcite in which the d(003) spacing for the Mg/Al hydrotalcite varied from 7.62 Å for the 2:1 Mg hydrotalcite to 7.98 Å for the 4:1 hydrotalcite. The thermal stability of the gallium containing hydrotalcite was determined using thermogravimetric analysis. Four mass loss steps at 77, 263–280, 485 and 828 °C with mass losses of 10.23, 21.55, 5.20 and 7.58% are attributed to dehydration, dehydroxylation and decarbonation. The thermal stability of the gallium containing hydrotalcite is slightly less than the aluminium hydrotalcite.  相似文献   

20.
Epoxy‐functionalized polystyrene/silica core–shell composite nanoparticles were prepared by the postaddition of glycidyl methacrylate (GMA) via emulsion polymerization. The outermost shell of obtained multilayered core–shell particles was made up of poly(glycidyl methacrylate) (PGMA). A semicontinuous process involving the dropwise addition of GMA was used to avoid demulsification of the emulsion system. The amount of grafted PGMA was quantified by Fourier transform infrared spectroscopy and was altered in a wide range (1–50 wt % to styrene). The binding efficiency was usually high (ca. 90%), indicating strong adhesion between the silica core and the polymer shell. There were approximately four or five original silica beads, which formed a cluster, per composite of nanoparticles whose size was about 60–70 nm. Other main factors of polymerization conditions including the amounts of sodium dodecyl sulfonate and silica are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2253–2262, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号