首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Closing the anthropogenic carbon cycle by converting CO2 into reusable chemicals is an attractive solution to mitigate rising concentrations of CO2 in the atmosphere. Herein, we prepared Ni metal catalysts ranging in size from single atoms to over 100 nm and distributed them across N-doped carbon substrates which were obtained from converted zeolitic imidazolate frameworks (ZIF). The results show variance in CO2 reduction performance with variance in Ni metal size. Ni single atoms demonstrate a superior Faradaic efficiency (FE) for CO selectivity (ca. 97 % at −0.8 V vs. RHE), while results for 4.1 nm Ni nanoparticles are slightly lower (ca. 93 %). Further increase the Ni particle size to 37.2 nm allows the H2 evolution reaction (HER) to compete with the CO2 reduction reaction (CO2RR). The FE towards CO production decreases to under 30 % and HER efficiency increase to over 70 %. These results show a size-dependent CO2 reduction for various sizes of Ni metal catalysts.  相似文献   

2.
In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2 electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOx species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4 and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuI species under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1 product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.  相似文献   

3.
In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2 electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOx species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4 and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuI species under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1 product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.  相似文献   

4.
Electrochemical CO2 reduction reaction (ECO2RR) with controlled product selectivity is realized on Ag−Cu bimetallic surface alloys, with high selectivity towards C2 hydrocarbons/alcohols (≈60 % faradaic efficiency, FE), C1 hydrocarbons/alcohols (≈41 % FE) and CO (≈74 % FE) achieved by tuning surface compositions and applied potentials. In situ spectral investigations and theoretical calculations reveal that surface-composition-dependent d-band center could tune *CO binding strengths, regulating the *CO subsequent reaction pathways and then the product selectivity. Further adjusting the applied potentials will alter the energy of participated electrons, which leads to controlled ECO2RR selectivity towards desired products. A predominant region map, with an indicator proposed to evaluate the thermodynamic predominance of the *CO subsequent reactions, is then provided as a reliable theoretical guidance for the controllable ECO2RR product selectivity over bimetallic alloys.  相似文献   

5.
Previous density-functional theory (DFT) calculations show that sub-nanometric Cu clusters (i.e., 13 atoms) favorably generate CH4 from the CO2 reduction reaction (CO2RR), but experimental evidence is lacking. Herein, a facile impregnation-calcination route towards Cu clusters, having a diameter of about 1.0 nm with about 10 atoms, was developed by double confinement of carbon defects and micropores. These Cu clusters enable high selectivity for the CO2RR with a maximum Faraday efficiency of 81.7 % for CH4. Calculations and experimental results show that the Cu clusters enhance the adsorption of *H and *CO intermediates, thus promoting generation of CH4 rather than H2 and CO. The strong interactions between the Cu clusters and defective carbon optimize the electronic structure of the Cu clusters for selectivity and stability towards generation of CH4. Provided here is the first experimental evidence that sub-nanometric Cu clusters facilitate the production of CH4 from the CO2RR.  相似文献   

6.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen‐rich metal–organic framework (Zn‐MOF‐74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of ?0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at ?0.55 V vs. RHE, one of the highest values among NPC‐based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost‐effective alternatives to noble‐metal CO2RR electrocatalysts for practical applications.  相似文献   

7.
Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental–computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure–property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.

A higher degree of surface alloying and Zn concentration boosts the selectivity towards ethanol of CuZn catalysts in CO2 electroreduction.  相似文献   

8.
The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) involves a variety of electron transfer pathways, resulting in poor reaction selectivity, limiting its use to meet future energy requirements. Polyoxometalates (POMs) can both store and release multiple electrons in the electrochemical process, and this is expected to be an ideal “electron switch” to match with catalytically active species, realize electron transfer modulation and promote the activity and selectivity of the electrocatalytic CO2RR. Herein, we report a series of new POM-based manganese-carbonyl (MnL) composite CO2 reduction electrocatalysts, whereby SiW12–MnL exhibits the most remarkable activity and selectivity for CO2RR to CO, resulting in an increase in the faradaic efficiency (FE) from 65% (MnL) to a record-value of 95% in aqueous electrolyte. A series of control electrochemical experiments, photoluminescence spectroscopy (PL), transient photovoltage (TPV) experiments, and density functional theory (DFT) calculations revealed that POMs act as electronic regulators to control the electron transfer process from POM to MnL units during the electrochemical reaction, enhancing the selectivity of the CO2RR to CO and depressing the competitive hydrogen evolution reaction (HER). This work demonstrates the significance of electron transfer modulation in the CO2RR and suggests a new idea for the design of efficient electrocatalysts towards CO2RR.

Polyoxometalates as electron regulators to promote the carbonyl manganese (MnL) electrocatalyst for highly efficient CO2 reduction in aqueous electrolyte.  相似文献   

9.
Electrochemical CO2 reduction reaction (CO2RR) with renewable electricity is a potentially sustainable method to reduce CO2 emissions. Palladium supported on cost‐effective transition‐metal carbides (TMCs) are studied to reduce the Pd usage and tune the activity and selectivity of the CO2RR to produce synthesis gas, using a combined approach of studying thin films and practical powder catalysts, in situ characterization, and density functional theory (DFT) calculations. Notably, Pd/TaC exhibits higher CO2RR activity, stability and CO Faradaic efficiency than those of commercial Pd/C while significantly reducing the Pd loading. In situ measurements confirm the transformation of Pd into hydride (PdH) under the CO2RR environment. DFT calculations reveal that the TMC substrates modify the binding energies of key intermediates on supported PdH. This work suggests the prospect of using TMCs as low‐cost and stable substrates to support and modify Pd for enhanced CO2RR activity.  相似文献   

10.
《中国化学快报》2022,33(8):3641-3649
Developing high-performance electrocatalysts for CO2 reduction reaction (CO2RR) is crucial since it is beneficial for environmental protection and the resulting value-add chemical products can act as an alternative to fossil feedstocks. Nonetheless, the direct reduction of CO2 into long-chain hydrocarbons and oxygenated hydrocarbons with high selectivity remains challenging. Copper (Cu) shows a distinctive advantage that it is the only pure metal catalyst for reducing CO2 into multi-carbon (C2+) products and the certain facets (e.g., (100), (111), (111)) of Cu nanocrystals exhibit relatively low energy barriers for the formation of specific products (e.g., CO, HCOOH, CH4, C2H4, C2H5OH, and other C2+ products). Therefore, extensive studies have been carried out to explore the relationship between the facets of Cu nanocrystals and corresponding catalytic products. In this review, we will discuss the crystal facet-dependent electrocatalytic CO2RR performance in metallic Cu catalysts, meanwhile, the detailed reaction mechanisms will be systematically summarized. In addition, we will provide a personal perspective for the future research directions in this emerging field. We believe this review is helpful to guide the design of high-selectivity Cu-based electrocatalysts for CO2RR.  相似文献   

11.
Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single‐atom catalyst (Ni SAC) with a uniform structure and well‐defined Ni‐N4 moiety on a conductive carbon support with which to explore the electrochemical CO2RR. Operando X‐ray absorption near‐edge structure spectroscopy, Raman spectroscopy, and near‐ambient X‐ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2RR. Furthermore, through combination with a kinetics study, the rate‐determining step of the CO2RR was determined to be *CO2?+H+→*COOH. This study tackles the four challenges faced by the CO2RR; namely, activity, selectivity, stability, and dynamics.  相似文献   

12.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

13.
《中国化学快报》2023,34(1):107134
Efficient CO2 reduction reaction (CO2RR) is one of the important topics in energy and environment field, but improving the electrochemical selectivity of specific product is a great challenge. Herein, we reported a unprecedented two-dimensional (2D) metal?organic framework with CuO4 unit (denoted as Cu-HHTT, HHTT = 9,10-dihydro-9,10-[1,2]benzenoanthracene-2,3,6,7,14,15-hexaol) as the electrocatalyst for CO2RR. Cu-HHTT exhibits high performance for CO2RR to produce CO, namely Faradaic efficiency of 96.6% toward CO with a current density of 18 mA/cm2 at the potential of ?0.6 V vs. RHE. Density function theory reveals that the desorption of CO species exhibits a lower energy barrier than that of hydrogenation of *CO intermediate, resulting in CO as the main product instead of alcohols or hydrocarbons.  相似文献   

14.
We report, for the first time, utilizing a rotating ring‐disc electrode (RRDE) assembly for detecting changes in the local pH during aqueous CO2 reduction reaction (CO2RR). Using Au as a model catalyst where CO is the only product, we show that the CO oxidation peak shifts by ?86±2 mV/pH during CO2RR, which can be used to directly quantify the change in the local pH near the catalyst surface during electrolysis. We then applied this methodology to investigate the role of cations in affecting the local pH during CO2RR and find that during CO2RR to CO on Au in an MHCO3 buffer (where M is an alkali metal), the experimentally measured local basicity decreased in the order Li+ > Na+ > K+ > Cs+, which agreed with an earlier theoretical prediction by Singh et al. Our results also reveal that the formation of CO is independent of the cation. In summary, RRDE is a versatile tool for detecting local pH change over a diverse range of CO2RR catalysts. Additionally, using the product itself (i.e. CO) as the local pH probe allows us to investigate CO2RR without the interference of additional probe molecules introduced to the system. Most importantly, considering that most CO2RR products have pH‐dependent oxidation, RRDE can be a powerful tool for determining the local pH and correlating the local pH to reaction selectivity.  相似文献   

15.
We report a new strategy to prepare a composite catalyst for highly efficient electrochemical CO2 reduction reaction (CO2RR). The composite catalyst is made by anchoring Au nanoparticles on Cu nanowires via 4,4′‐bipyridine (bipy). The Au‐bipy‐Cu composite catalyzes the CO2RR in 0.1 m KHCO3 with a total Faradaic efficiency (FE) reaching 90.6 % at ?0.9 V to provide C‐products, among which CH3CHO (25 % FE) dominates the liquid product (HCOO?, CH3CHO, and CH3COO?) distribution (75 %). The enhanced CO2RR catalysis demonstrated by Au‐bipy‐Cu originates from its synergistic Au (CO2 to CO) and Cu (CO to C‐products) catalysis which is further promoted by bipy. The Au‐bipy‐Cu composite represents a new catalyst system for effective CO2RR conversion to C‐products.  相似文献   

16.
Nitrogen‐doped carbon materials (N‐Cmat) are emerging as low‐cost metal‐free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well‐defined N‐Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in‐situ‐generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm?2 at ?0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N‐Cmat, which may guide the exploration of cost‐effective electrocatalysts for efficient CO2 reduction.  相似文献   

17.
To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy‐dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2RR literature. In this Minireview, the recent progress on understanding the stability of copper‐based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.  相似文献   

18.
The electrochemical reduction of CO2 to produce sustainable fuels and chemicals has attracted great attention in recent years. It is shown that surface-modified carbons catalyze the CO2RR. This study reports a strategy to modify the surface of commercially available carbon materials by adding oxygen and nitrogen surface groups without modifying its graphitic structure. Clear differences in CO2RR activity, selectivity and the turnover frequency between the surface-modified carbons were observed, and these differences were ascribed to the nature of the surface groups chemistry and the point of zero charge (PZC). The results show that nitrogen-containing surface groups are highly selective towards the formation of CO from the electroreduction of CO2 in comparison with the oxygen-containing surface groups, and the carbon without surface groups. This demonstrates that the selectivity of carbon for CO2RR can be rationally tuned by simply altering the surface chemistry via surface functionalization.  相似文献   

19.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   

20.
It is still a great challenge to achieve high selectivity of CH4 in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO2 activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH4. Here, Cu2O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal–organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH4 with partial current density of 10.8 mA cm−2 at −1.4 V vs. RHE (reversible hydrogen electrode) in CO2RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH2O and *OCH3) involved in the pathway of CH4 formation are stabilized by the single active Cu2O(111) and hydrogen bonding, thus generating CH4 instead of CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号