首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen-rich metal–organic framework (Zn-MOF-74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of −0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at −0.55 V vs. RHE, one of the highest values among NPC-based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost-effective alternatives to noble-metal CO2RR electrocatalysts for practical applications.  相似文献   

2.
Nitrogen‐doped carbon materials (N‐Cmat) are emerging as low‐cost metal‐free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well‐defined N‐Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in‐situ‐generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm?2 at ?0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N‐Cmat, which may guide the exploration of cost‐effective electrocatalysts for efficient CO2 reduction.  相似文献   

3.
《中国化学快报》2023,34(8):108120
Electrochemical reduction of CO2 (CO2RR) to value-added chemicals is an attractive strategy for greenhouse gas mitigation and carbon recycle. Carbon material is one of most promising electrocatalysts but its product selectivity is limited by few modulating approaches for active sites. Herein, the predominant pyridinic N-B sites (accounting for 80% to all N species) are fabricated in hierarchically porous structure of graphene nanoribbons/amorphous carbon. The graphene nanoribbons and porous structure can accelerate electron and ion/gas transport during CO2RR, respectively. This carbon electrocatalyst exhibits excellent selectivity toward CO2 reduction to CH4 with the faradaic efficiency of 68% at −0.50 V vs. RHE. As demonstrated by density functional theory, a proper adsorbed energy of *CO and *CH2O are generated on the pyridinic N-B site resulting into high CH4 selectivity. Therefore, this study provides a novel method to modulate active sites of carbon-based electrocatalyst to obtain high CH4 selectivity.  相似文献   

4.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

5.
Ni,N‐doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen‐coordinated, single Ni atom active sites. However, experimentally confirming Ni?N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile‐derived Ni,N‐doped carbon electrocatalysts (Ni‐PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X‐ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square‐planar geometry that strongly resembles the active sites of molecular metal–porphyrin catalysts.  相似文献   

6.
Morphology-controlled electrocatalysts with the ability of CO2adsorption/activation, mass transfer, high stability and porosity are much desired in electrochemical CO2reduction reaction(CO2RR). Here, three kinds of multi-dimensional nanostructures(i.e., hollow sphere, nanosheets and nanofibers) have been successfully produced through the modulation of porphyrin-based covalent organic frameworks(COFs)with various modulators. The obtained nanostructures with high-s...  相似文献   

7.
Bi2O3 nanosheets were grown on a conductive multiple channel carbon matrix (MCCM) for CO2RR. The obtained electrocatalyst shows a desirable partial current density of ca. 17.7 mA cm?2 at a moderate overpotential, and it is highly selective towards HCOOH formation with Faradaic efficiency approaching 90 % in a wide potential window and its maximum value of 93.8 % at ?1.256 V. It also exhibits a maximum energy efficiency of 55.3 % at an overpotential of 0.846 V and long‐term stability of 12 h with negligible degradation. The superior performance is attributed to the synergistic contribution of the interwoven MCCM and the hierarchical Bi2O3 nanosheets, where the MCCM provides an accelerated electron transfer, increased CO2 adsorption, and a high ratio of pyrrolic‐N and pyridinic‐N, while ultrathin Bi2O3 nanosheets offer abundant active sites, lowered contact resistance and work function as well as a shortened diffusion pathway for electrolyte.  相似文献   

8.
Metal oxides or sulfides are considered to be one of the most promising CO2 reduction reaction (CO2RR) precatalysts, owing to their electrochemical conversion in situ into highly active electrocatalytic species. However, further improvement of the performance requires new tools to gain fine control over the composition of the active species and its structural features [e.g., grain boundaries (GBs) and undercoordinated sites (USs)], directly from a predesigned template material. Herein, we describe a novel electrochemically driven cation exchange (ED‐CE) method that enables the conversion of a predesigned CoS2 template into a CO2RR catalyst, Cu2S. By means of ED‐CE, the final Cu2S catalyst inherits the original 3 D morphology of CoS2, and preserves its high density of GBs. Additionally, the catalyst's phase structure, composition, and density of USs were precisely tuned, thus enabling rational design of active CO2RR sites. The obtained Cu2S catalyst achieved a CO2‐to‐formate Faradaic efficiency of over 87 % and a record high activity (among reported Cu‐based catalysts). Hence, this study opens the way for utilization of ED‐CE reactions to design advanced electrocatalysts.  相似文献   

9.
Tailor-made advanced electrocatalysts with high active and stable for hydrogen evolution reaction (HER)play a key role in the development of hydrogen economy.Herein,a N,P-co-doped molybdenum carbide confined in porous carbon matrix (N,P-Mo2C/NPC) with a hierarchical structure is prepared by a resources recovery process.The N,P-Mo2C/NPC compound exhibits outstanding HER activity with a low overpotential of 84 mV to achieve 10 mA/cm2,and excellent stability in alka...  相似文献   

10.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

11.
It is still a great challenge to achieve high selectivity of CH4 in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO2 activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH4. Here, Cu2O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal–organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH4 with partial current density of 10.8 mA cm−2 at −1.4 V vs. RHE (reversible hydrogen electrode) in CO2RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH2O and *OCH3) involved in the pathway of CH4 formation are stabilized by the single active Cu2O(111) and hydrogen bonding, thus generating CH4 instead of CO.  相似文献   

12.
Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single‐atom catalyst (Ni SAC) with a uniform structure and well‐defined Ni‐N4 moiety on a conductive carbon support with which to explore the electrochemical CO2RR. Operando X‐ray absorption near‐edge structure spectroscopy, Raman spectroscopy, and near‐ambient X‐ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2RR. Furthermore, through combination with a kinetics study, the rate‐determining step of the CO2RR was determined to be *CO2?+H+→*COOH. This study tackles the four challenges faced by the CO2RR; namely, activity, selectivity, stability, and dynamics.  相似文献   

13.
《中国化学快报》2023,34(4):107458
Metal-doped carbon materials, as one of the most important electrocatalytic catalysts for CO2 reduction reaction (CO2RR), have attracted increasing attention. Herein, a series of Cu cluster embedded highly porous nanofibers have been prepared through the carbonization of electro-spun MOF/PAN nanofibers. The obtained Cu cluster doped porous nanofibers possessed fibrous morphology, high porosity, conductivity, and uniformly dispersed Cu clusters, which could be applied as promising CO2RR catalysts. Specifically, best of them, MCP-500 exhibited high catalytic performance for CO2RR, in which the Faradaic efficiency of CO (FECO) was as high as 98% at ?0.8 V and maintained above 95% after 10 h continuous electrocatalysis. The high performance might be attributed to the synergistic effect of tremendously layered graphene skeleton and uniformly dispersed Cu clusters that could largely promote the electron conductivity, mass transfer and catalytic activity during the electrocatalytic CO2RR process. This attempt will provide a new idea to design highly active CO2RR electrocatalyst.  相似文献   

14.
Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non‐monotonic size‐dependence of the selectivity in cube‐shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.  相似文献   

15.
Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal–air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core–shell Co@Co3O4 nanoparticles embedded in CNT‐grafted N‐doped carbon‐polyhedra obtained by the pyrolysis of cobalt metal–organic framework (ZIF‐67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2, and RuO2 and thus ranking them among one of the best non‐precious‐metal electrocatalysts for reversible oxygen electrodes.  相似文献   

16.
Photo/electrochemical CO2 splitting is impeded by the low cost‐effective catalysts for key reactions: CO2 reduction (CDRR) and water oxidation. A porous silicon and nitrogen co‐doped carbon (SiNC) nanomaterial by a facile pyrolyzation was developed as a metal‐free bifunctional electrocatalyst. CO2‐to‐CO and oxygen evolution (OER) partial current density under neutral conditions were enhanced by two orders of magnitude in the Tafel regime on SiNC relative to single‐doped comparisons beyond their specific area gap. The photovoltaic‐driven CO2 splitting device with SiNC electrodes imitating photosynthesis yielded an overall solar‐to‐chemical efficiency of advanced 12.5 % (by multiplying energy efficiency of CO2 splitting cell and photovoltaic device) at only 650 mV overpotential. Mechanism studies suggested the elastic electron structure of ?Si(O)?C?N? unit in SiNC as the highly active site for CDRR and OER simultaneously by lowering the free energy of CDRR and OER intermediates adsorption.  相似文献   

17.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

18.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

19.
The electrochemical CO2 reduction (CO2RR) is a sustainable approach to mitigate the increased CO2 emissions and simultaneously produce value-added chemicals and fuels. Metal-nitrogen-carbon (M-N-C) based single-atom catalysts (SACs) have emerged as promising electrocatalysts for CO2RR with high activity, selectivity, and stability. To design efficient SACs for CO2RR, the key influence factors need to be understood. Here, we summarize recent achievements on M-N-C SACs for CO2RR and highlight the significance of the key constituting factors, metal sites, the coordination environment, and the substrates, for achieving high CO2RR performance. The perspective views and guidelines are provided for the future direction of developing M-N-C SACs as CO2RR catalysts.  相似文献   

20.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm?2) and electrolyte‐starved (4.7 μL mgS?1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号