首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In this paper, the biomimetic epoxidation of alkenes catalyzed by tetrakis(p-aminophenyl)porphyrinatomanganese(III) chloride, [Mn(TNH2PP)Cl], supported on functionalized multi-wall carbon nanotubes, MWCNT, is reported. The catalyst, [Mn(TNH2PP)Cl-MWCNT], was used as an efficient and heterogeneous catalyst for epoxidation of alkenes with NaIO4 at room temperature, in the presence of imidazole as an axial ligand. This new heterogenized catalyst was characterized by elemental analysis, FT IR spectroscopy, diffuse reflectance UV–Vis spectrophotometry, scanning electron microscopy and transmission electron microscopy. The biggest advantage of Mn(TNH2PP)Cl-MWCNT is its high reusability in the oxidation reactions, in which the catalyst was reused several times without significant loss of its catalytic activity.  相似文献   

2.
Porous organic polymer has recently attracted tremendous interest because of its potential to combine the best features of homogeneous and heterogeneous catalysts. In this study, copper supported on phenanthroline-functionalized porous polymer (Cu@PCP-Phen) was prepared by a co-polymerization method and used as a heterogeneous catalyst for dimethyl carbonate synthesis via the oxidative carbonylation of methanol. The catalyst was characterized by N2 adsorption, scanning electron microscopy, transmission electron microscopy, 13C solid-state nuclear magnetic resonance, and X-ray photoelectron spectroscopy, which suggested that it possessed a big surface area, hierarchical porous structure, and strong electron-donating effect toward copper species. The Cu@PCP-Phen catalyst showed high catalytic activity, which was significantly higher than those achieved with Cu-based catalysts under similar reaction conditions. In addition, the catalyst can be easily separated and reused at least six times with only a slight decrease in activity. The salient features of this protocol are the simplicity in handling of the catalyst, high catalytic activity, excellent selectivity, low copper leaching, and good catalyst recyclability.  相似文献   

3.
A Schiff base ligand derived from 5-bromo-2-hydroxybenzaldehyde and 2,2′-dimethylpropylenediamine (H2L) and its corresponding dioxomolybdenum(VI) complex (Mo(O)2L) has been synthesized and characterized by spectroscopic methods. The adsorption of Mo(O)2L on the surface of silica-coated magnetite nanoparticles via hydrogen bonding led to the formation of (α-Fe2O3)–MCM-41–Mo(O)2L as a heterogeneous catalyst. FT-IR and atomic absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize and investigate the new nanocatalyst. A practical catalytic method for the efficient and highly selective oxidation of a wide range of olefins with hydrogen peroxide and tert-butyl hydroperoxide in ethanol over the prepared molybdenum nanocatalyst was investigated. Under reflux conditions, the oxidation of cyclooctene with tert-butyl hydroperoxide or hydrogen peroxide led to the formation of epoxide as the sole product. The catalyst was reused at least six times without a significant decrease in catalytic activity or selectivity, and without detectable leaching of the catalyst.  相似文献   

4.
Aerobic epoxidation of olefins at a mild reaction temperature has been carried out by using nanomorphology of [Cu3(BTC)2] (BTC=1,3,5‐benzenetricarboxylate) as a high‐performance catalyst through a simple synthetic strategy. An aromatic carboxylate ligand was employed to furnish a heterogeneous copper catalyst and also serves as the ligand for enhanced catalytic activities in the catalytic reaction. The utilization of a copper metal–organic framework catalyst was further extended to the aerobic oxidation of aromatic alcohols. The shape and size selectivity of the catalyst in olefin epoxidation and alcohol oxidation was investigated. Furthermore, the as‐synthesized copper catalyst can be easily recovered and reused several times without leaching of active species or significant loss of activity.  相似文献   

5.
The catalytic activity of magnetically recoverable MIL‐101 was investigated in the oxidation of alkenes to carboxylic acids and cyanosilylation of aldehydes. MIL‐101 was treated with Fe3O4 and the prepared catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, N2 adsorption measurements, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and inductively coupled plasma analysis. The catalytic active sites in this heterogeneous catalyst are Cr3+ nodes of the MIL‐101 framework. This heterogeneous catalyst has the advantages of excellent yields, short reaction times and reusability several times without significant decrease in its initial activity and stability in both oxidation and cyanosilylation reactions. Its magnetic property allows its easy separation using an external magnetic field.  相似文献   

6.
The catalytic activity of graphene oxide‐bound tetrakis(p ‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.  相似文献   

7.
A heterogeneous catalyst was synthesized by encapsulation of a Keggin‐type heteropolytungstate, potassium dodecatungstocobaltate trihydrate, K5[CoW12O40]·(Co‐POM), into chromium(III) terephthalate (MIL‐101). Encapsulation was achieved via a ‘build bottle around ship’ strategy in aqueous media, following a hydrothermal method. The structure of the resulting crystalline solid was characterized using X‐ray diffraction, correlated with Fourier transform infrared and UV–visible spectroscopy. The metal content was analysed using optical emission spectroscopy. Transmission electron microscopy was used to measure particle size and N2 adsorption in a Brunauer–Emmett–Teller instrument to characterize the specific surface area. The catalytic activity was investigated using methanolysis of epoxides under mild conditions as a test reaction. The turnover frequency of the heterogeneous Co‐POM@MIL‐101 catalyst was more than 20 times higher than that of the homogeneous Co‐POM catalyst. The Co‐POM@MIL‐101 catalyst was reused several times with negligible leaching of Co‐POM and with no considerable loss of its initial efficiency. The simplicity of preparation, extraordinary stability and high reactivity make Co‐POM@MIL‐101 an exceptional catalytic matrix that is easily separable from reaction media.  相似文献   

8.
In this study, manganese porphyrin was grafted on the surface of graphene oxide nanosheets via covalent bonding to produce a heterogeneous catalyst. The prepared nanocomposite was characterized using X-ray diffraction, UV–vis spectroscopy, scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis. Atomic absorption spectroscopy was also used to determine the amount of the loaded catalyst. The catalytic efficiency of the immobilized Mn-porphyrin was investigated for the aerobic oxidation of alkenes and saturated alkanes in acetone under mild reaction conditions. The prepared heterogenized catalyst displays superior catalytic performance as compared to the homogeneous catalyst. Moreover, the excellent turnover number (more than 31,767) achieved for the oxidation of styrene indicates the high longevity of the supported catalyst. The catalyst structure is preserved well after the oxidation reaction and is simply reused at least five times, without any significant loss of the catalytic efficiency.  相似文献   

9.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

10.
A thiosemicarbazone Cu(II) complex anchored to a polystyrene framework has been synthesized and characterized by analytical and spectroscopic techniques. The complex was found to be a highly active catalyst for the oxidation of various organic substrates including alkenes and alcohols using H2O2 as oxidant. The reaction conditions were optimized with respect to temperature, solvent, oxidant, catalyst amount, and substrate to peroxide ratio. The heterogeneous catalyst was reused five times without significant loss of activity. A comparison between the catalytic activities of this polymer-supported Cu(II) complex and its homogeneous analogue was carried out.  相似文献   

11.
Copper(II) complex of a Schiff base ligand (H2L) was synthesized, characterized, and encapsulated in the cavities of zeolite-Y by a fixed ligand method. The zeolite encapsulated metal complex (CuL-Y) was characterized using FT-IR, UV–Vis and atomic absorption spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), scanning electron microscopy images (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET). The catalytic activity and electrochemical behavior of the encapsulated complex has been studied in the oxidation of a wide range of sulfides and olefins using H2O2 in ethanol. This heterogeneous catalytic system shows a dramatic increase in total turnover number (46,500) for oxidation of styrene. It could be readily reused for at least eight successive times without discernible activity and selectivity deterioration, which displays potential for practical applications.  相似文献   

12.
A new heterogeneous nanocatalyst [MWCNTs@TEPA/Co (II)] was successfully prepared using multiwall carbon nanotubes (MWCNTs) as a suitable and efficient support for covalent anchoring of tetraethylene pentaamine (TEPA)/Co (II). The new heterogeneous catalyst was prepared through an easy and applicable method, and characterized by various techniques such as Fourier transform-infrared, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, mapping, field emission-scanning electron microscopy, inductively coupled plasma-optical emission spectrometry and Brunauer−Emmett−Teller. Synthesized catalyst was used efficiently for the preparation of dihydropyrimido [4,5-b]quinolinetrione derivatives via the four-components reaction of barbituric acid, dimedone, aryl aldehyde and amines under thermal conditions. The nanostructure catalyst was easily recovered by filtration and reused several times without noticeable loss of its catalytic activity. Low amounts of catalyst (0.005 g), short reaction times and green conditions are some merits of the presented method.  相似文献   

13.
A novel heterogeneous magnetic palladium nano‐biocatalyst was designed by utilizing Irish moss, a family of sulfated polysaccharides extracted from algae, as a natural biopolymer. This magnetic Irish moss decorated with palladium (Pd–Fe3O4@IM) to form a biomagnetic catalytic system was synthesized and well characterized by FT–IR analysis, X‐ray powder diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. The catalyst was stable to air and moisture and displayed high catalytic activity in ligand‐free Suzuki–Miyaura cross‐coupling reactions conducted under green chemistry reaction conditions. The aromatic ketones are produced by the cross‐coupling reaction between acid chlorides and aryl boronic acid derivatives in high yields.  相似文献   

14.
Efficient epoxidation of alkenes catalyzed by tetrakis(p-aminophenyl)porphyrinatomanganese(III) chloride, [Mn(TNH2PP)Cl], supported on graphene oxide nanosheets, is reported. The catalyst, [Mn(TNH2PP)Cl]@GO, was prepared by covalent attachment of amino groups of porphyrin to carboxylic acid groups of GO. This new heterogenized catalyst was characterized by ICP, FT-IR and diffuse reflectance UV–vis spectroscopies, scanning electron microscopy and transmission electron microscopy. This catalyst was applied as an efficient and reusable catalyst in the epoxidation of alkenes with NaIO4 at room temperature, in the presence of imidazole as axial ligand. The most noteworthy advantage of [Mn(TNH2PP)Cl]@GO is its high reusability in the oxidation reactions, in which the catalyst was reused several times without significant loss of its catalytic activity.  相似文献   

15.
In the present study, CoFe2O4@SiO2@CPTMS nanocomposite was synthesized and the homogeneous chiral Mn‐salen complex was anchored covalently onto the surface of CoFe2O4@SiO2@CPTMS nanocomposite. The heterogeneous Mn‐salen magnetic nanocatalyst (CoFe2O4@SiO2@CPTMS@ chiral Mn (III) Complex) was characterized by different techniques including transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), powder X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). Then, the aerobic enantioselective oxidation of olefins to the corresponding epoxide was investigated in the presence of magnetic chiral CoFe2O4@SiO2@Mn (III) complex at ambient conditions within 90 min. The results showed the corresponding products were synthesized with excellent yields and selectivity. In addition, the heterogeneous CoFe2O4@SiO2@ CPTMS@ chiral Mn (III) complex has benefits such as high selectivity and comparable catalytic reactivity with its homogeneous analog as well as mild reaction condition, facile recovery, and recycling of the heterogeneous catalyst.  相似文献   

16.
Palladium and Fe3O4 nanoparticles were deposited on N‐(2‐aminoethyl)acetamide‐functionalized cellulose for use in a catalytic reaction. The catalyst was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy, and applied in the oxidation reaction of ethylbenzene at 100 °C using H2O2. Styrene oxide was obtained as the sole product of the oxidation reaction during 24 h. This reaction has some advantages such as one‐pot transformation of ethylbenzene to styrene oxide, high yield, excellent selectivity and magnetically recoverable catalyst. Also, the recovered catalyst could be used in the oxidation reaction four times without decrease in yield. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A new heterogeneous catalyst, Cr(III) Schiff base‐containing layered double hydroxide, was synthesized using the intercalation method. The Cr(III) Schiff base complex derived from 2‐hydroxy‐1‐naphthaldehyde and 4‐aminobenzoic acid was intercalated into the layered double hydroxide. The synthesized materials were characterized using inductively coupled plasma atomic emission spectrometry, energy‐dispersive X‐ray analysis, scanning electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller surface area measurement, Fourier transform infrared spectroscopy, thermogravimetric analysis, diffuse reflectance UV–visible spectroscopy and electron paramagnetic resonance spectroscopy. The catalytic activity was investigated for the oxidation of ethylbenzene with tert‐butylhydroperoxide as an oxidant under solvent‐free conditions as well as with lower chromium concentrations. In the oxidation reaction, ethylbenzene was oxidized to acetophenone and benzaldehyde. The catalyst was recycled ten times without significant loss of catalytic activity. Leaching studies performed with hot filtration experiments showed that the chromium catalyst was heterogeneous in nature and stable under the reaction conditions.  相似文献   

18.
A novel super acidic magnetic nanoparticle as catalyst was successfully synthesized. The preparation of this dendrimer sulfonic acid functionalized γ‐Fe2O3 magnetic core‐shell silica nanoparticles as a new recoverable and heterogeneous nanocatalyst was described. The new catalyst was characterized using various techniques such as scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and thermo gravimetric synthesis (TGA). Moreover, we have examined the catalytic activity of the catalyst for one‐pot, efficient and facile synthesis of 2‐hydroxy‐1,4‐naphthoquinone derivatives via a three‐component condensation reaction of 2‐hydroxynaphthalene‐1,4‐dione, aromatic aldehydes and aniline derivatives. High yields of products, short reaction times, waste‐free, mild, ambient and solvent‐free reaction conditions are advantages of this protocol. Also, the catalyst can be easily recovered by an external magnetic and reused several times without significant loss of its catalytic activity.  相似文献   

19.
A simple, efficient, and facile heterogeneous multi-walled carbon nanotubes-zirconia nanocomposite (MWCNTs-ZrO2) has been synthesized using natural feedstock coconut juice (água-de-coco do Ceará). The synthesized catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy analysis. The heterogeneous nanocomposite has been used for one-pot synthesis of various N-heterocyclic compounds like pyrazoles, 1,2-disubstituted benzimidazoles, 2-arylbenzazoles, and 2,3-dihydroquinazolin-4(1H)-ones under green reaction medium at room temperature. This novel method has several advantages, such as short reaction time, simple work-up, excellent yield, and green reaction conditions. The catalyst was recycled up to four times without significant loss in catalytic activity.  相似文献   

20.
Here, we have presented a protocol for green synthesis, characterization, and catalytic application of TX100/Fe3O4@dopa@CuL ( FDCTX ) magnetically separable nanoparticles. Fe3O4@dopa@CuL ( FDC ) was synthesized using a four-step procedure: (i) synthesis of a dihydrazone derivative, (ii) reaction of the dihydrazone derivative with copper perchlorate salt to generate a copper complex of the dihydrazone derivative, (iii) immobilization of the complex onto Fe3O4@dopa to generate FDC , and (iv) coating of FDC with surfactant Triton X-100. The as-synthesized homogeneous complex was well characterized using UV–Vis., Fourier-transform infrared (FT-IR), electrospray ionization–mass spectrometry, and single-crystalX-ray techniques. Single-crystalX-ray analysis revealed the tetranuclear framework of the complex. The heterogeneous nanoparticles ( FDCTX ) were characterized using FT-IR, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersiveX-ray spectroscopy, magnetic hysteresis, and dynamic light scattering techniques. Finally, both the homogeneous and heterogeneous catalysts were utilized for efficient oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes. A most probable mechanism for the oxidation reaction is proposed at the end of the article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号