首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn(III)–pentadentate Schiff base complex supported on multi‐walled carbon nanotubes as a recyclable and reusable, green and nano‐heterogeneous catalyst was designed and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy , inductively coupled plasma mass spectrometry, elemental analysis and thermogravimetric analysis. A facile, eco‐friendly, mild and green procedure was developed for the one‐pot three‐component synthesis of tetrahydrobenzo[b ]pyrans via tandem Knoevenagel–Michael cyclocondensation reactions between aromatic aldehydes, 1,3‐diones and malononitrile using a catalytic amount of Mn(III)–pentadentate Schiff base complex supported on MWCNTs as an efficient recyclable heterogeneous catalyst under solvent‐free conditions at room temperature. This process has the advantages of easy availability, stability, recyclability and eco‐friendliness of the catalyst, short reaction times, high to excellent yields and simple work‐up procedure.  相似文献   

2.
As a continuation of our efforts to develop new heterogeneous nanomagnetic catalysts for greener reactions, we identified a Schiff base–palladium(II) complex anchored on magnetic nanoparticles (SB‐Pd@MNPs) as a highly active nanomagnetic catalyst for Suzuki–Miyaura cross‐coupling reactions between phenylboronic acid and aryl halides and for the reduction of nitroarenes using sodium borohydride in an aqueous medium at room temperature. The SB‐Pd@MNPs nanomagnetic catalyst shows notable advantages such as simplicity of operation, excellent yields, short reaction times, heterogeneous nature, easy magnetic work up and recyclability. Characterization of the synthesized SB‐Pd@MNPs nanomagnetic catalyst was performed with various physicochemical methods such as attenuated total reflectance infrared spectroscopy, UV–visible spectroscopy, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy, powder X‐ray powder diffraction, thermogravimetric analysis and Brunauer–Emmett–Teller surface area analysis.  相似文献   

3.
For the first time, a novel, straightforward and inexpensive route for immobilization of metals in Schiff base complex form is reported applying 2,4‐toluenediisocyanate as a precursor of primary amine group. A nickel(II) Schiff base complex supported on nano‐TiO2 was designed and synthesized as an effective heterogeneous nanocatalyst for organic reactions, and well characterized using various techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis and thermogravimetric analysis. The catalytic efficiency of the complex was evaluated in selective oxidation of sulfide to sulfoxide by hydrogen peroxide as an oxidant under solvent‐free conditions at room temperature, which successfully resulted in high yield and high conversion of products. Effective factors including solvent type, oxidant and catalyst amount were also optimized. The catalyst shows outstanding reusability and could be impressively recovered for six consecutive cycles without significant change of its catalytic efficiency.  相似文献   

4.
Oxo‐vanadium(IV) Schiff base complex supported on MCM‐41 as an organic–inorganic hybrid heterogeneous catalyst was synthesized with post‐grafting of MCM‐41 with 3‐aminoropropyltrimethoxysilane and subsequent reaction with 3,4‐dihydroxybenzaldehyde and then complexation with oxo‐vanadium acetylacetonate salt. The catalyst was analysed using a series of characterization techniques such as Fourier transform infrared spectroscopy, small‐angle X‐ray diffraction, nitrogen absorption isotherm, transmission electron microscopy and thermogravimetric analysis. The data collected provided evidence that the vanadium complex was anchored onto MCM‐41. High catalytic activity of this catalyst was observed in the oxidation of various sulfides and thiols (into sulfoxides and disulfides, respectively) with urea hydrogen peroxide as oxidant in high to excellent yields and selectivity under mild conditions. The heterogeneous catalyst could be recovered easily and reused several times without significant loss in catalytic activity and selectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

6.
A heterogeneous catalyst was synthesized by encapsulation of a Keggin‐type heteropolytungstate, potassium dodecatungstocobaltate trihydrate, K5[CoW12O40]·(Co‐POM), into chromium(III) terephthalate (MIL‐101). Encapsulation was achieved via a ‘build bottle around ship’ strategy in aqueous media, following a hydrothermal method. The structure of the resulting crystalline solid was characterized using X‐ray diffraction, correlated with Fourier transform infrared and UV–visible spectroscopy. The metal content was analysed using optical emission spectroscopy. Transmission electron microscopy was used to measure particle size and N2 adsorption in a Brunauer–Emmett–Teller instrument to characterize the specific surface area. The catalytic activity was investigated using methanolysis of epoxides under mild conditions as a test reaction. The turnover frequency of the heterogeneous Co‐POM@MIL‐101 catalyst was more than 20 times higher than that of the homogeneous Co‐POM catalyst. The Co‐POM@MIL‐101 catalyst was reused several times with negligible leaching of Co‐POM and with no considerable loss of its initial efficiency. The simplicity of preparation, extraordinary stability and high reactivity make Co‐POM@MIL‐101 an exceptional catalytic matrix that is easily separable from reaction media.  相似文献   

7.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

8.
Palladium and Fe3O4 nanoparticles were deposited on N‐(2‐aminoethyl)acetamide‐functionalized cellulose for use in a catalytic reaction. The catalyst was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy, and applied in the oxidation reaction of ethylbenzene at 100 °C using H2O2. Styrene oxide was obtained as the sole product of the oxidation reaction during 24 h. This reaction has some advantages such as one‐pot transformation of ethylbenzene to styrene oxide, high yield, excellent selectivity and magnetically recoverable catalyst. Also, the recovered catalyst could be used in the oxidation reaction four times without decrease in yield. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A protocol is introduced for the preparation of a new cage‐like Pd–Schiff base organometallic complex supported on Fe3O4 nanoparticles (Fe3O4@Schiff‐base‐Pd). The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller measurements, scanning electron microscopy (SEM), transmission electron microscopy, X‐ray mapping, thermogravimetric analysis, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. In the second stage, the catalytic activity of this catalyst was studied in the Suzuki and Heck cross‐coupling reactions in water as a green solvent. In this sense, simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. Finally, the nanocatalyst was easily recovered, using an external magnet, and reused several times without significant loss of its catalytic efficiency. In addition, the stability of the catalyst after recycling was confirmed using SEM, XRD and FT‐IR techniques.  相似文献   

10.
Mesoporous chitosan‐grafted iron tetra (4‐carboxyphenyl) porphyrin catalyst (Fe TCPP/mesp‐CTS) was prepared and investigated as a practical model for the nano‐cavity and coordinate regulation‐catalysis(CRC) function in cytochrome P‐450 enzyme. Fe TCPP/mesp‐CTS was characterized by X‐ray Diffraction (XRD), Thermogravimetry (TG), Ultraviolet–visible spectroscopy(UV‐Vis), Ultraviolet–visible– Diffuse reflectance spectroscopy (UV‐DRS), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT‐IR), and X‐ray photoelectron spectroscopy (XPS) techniques. The catalytic activity of Fe TCPP/mesp‐CTS for ethylbenzene oxidation was investigated and it was proved to be a better catalyst than Fe TCPP/macp‐CTS based on the ethylbenzene conversion, turnover numbers(TON), and the reusability. These results are attributed to the mesocavity and CRC of amino group in Fe TCPP/mesp‐CTS. The highest ethylbenzene conversion and yields of ketone and alcohol were 24.4% and 18.2%, respectively.  相似文献   

11.
A novel heterogeneous magnetic palladium nano‐biocatalyst was designed by utilizing Irish moss, a family of sulfated polysaccharides extracted from algae, as a natural biopolymer. This magnetic Irish moss decorated with palladium (Pd–Fe3O4@IM) to form a biomagnetic catalytic system was synthesized and well characterized by FT–IR analysis, X‐ray powder diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. The catalyst was stable to air and moisture and displayed high catalytic activity in ligand‐free Suzuki–Miyaura cross‐coupling reactions conducted under green chemistry reaction conditions. The aromatic ketones are produced by the cross‐coupling reaction between acid chlorides and aryl boronic acid derivatives in high yields.  相似文献   

12.
A nanocomposite was synthesized using carbon‐coated Fe3O4 nanoparticle‐decorated reduced graphene oxide as a convenient and efficient supporting material for grafting of a manganese–reduced Schiff base (salan) complex via covalent attachment. The nanocomposite was characterized using X‐ray diffraction, Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy. It was evaluated as a catalyst for the aerobic epoxidation of olefins in acetonitrile in combination with a sacrificial co‐reductant (isobutyraldehyde). The catalytic performance of the heterogeneous system of the Mn–salan complex is superior to that of the homogeneous one. The catalyst activity strongly depends on the reaction temperature and nature of the solvent. The epoxide yield increases with the nucleophilic character of the olefin. The nanocomposite performs well as an epoxidation catalyst for electron‐rich and conjugated olefins. It can be recovered from the reaction medium by magnetic decantation and reused, maintaining good catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Cobalt(II), iron(III) or oxovanadium(II) Schiff base metal complexes have been covalently grafted onto graphene oxide ( GO ) previously functionalized with 3‐aminopropyltriethoxysilane. Potential catalytic behaviors were tested in the epoxidation of styrene, using air as the oxidant. The catalysts were characterized using infrared (IR) and Raman spectroscopies, thermogravimetric analyses, inductively coupled plasma atomic emission spectrometry (ICP‐AES), X‐ray diffraction, nitrogen adsorption–desorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). IR spectroscopy, thermogravimetric analyses and ICP‐AES confirmed the successful incorporation of the metal Schiff base complexes onto GO . X‐ray diffraction, nitrogen adsorption–desorption, Raman spectroscopy, SEM and TEM showed the intact structure of the GO . Co-GO and Fe-GO showed high styrene conversion (90.8 versus 86.7%) and epoxide selectivity (63.7 versus 51.4%). Nevertheless, VO-GO showed poorer catalytic performance compared with Co-GO and Fe-GO . The recycling results of these heterogeneous catalysts showed good recoverability without significant loss of activity and selectivity within four successive runs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Copper immobilized on silk fibroin was successfully prepared and fully characterized using powder X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis, and inductively coupled plasma‐atomic emission spectroscopy. Catalytic activity of this catalyst was examined in the azide‐alkyne cycloaddition reaction with internal and terminal alkynes at room temperature under mild conditions. The reusability of the heterogeneous supported Cu catalyst was examined four times without significant loss of catalytic activity.  相似文献   

15.
A Pd(II) Schiff base complex as an efficient and highly heterogeneous catalyst was developed by immobilization of a palladium complex on the surface of modified Fe3O4 magnetite nanoparticles. These surface‐modified nanoparticles were characterized using various techniques such as transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry, elemental analysis and Fourier transform infrared spectroscopy. The palladium catalyst exhibited efficient catalytic activity in Suzuki and Heck coupling reactions. This method has notable advantages such as excellent chemoselectivity, mild reaction conditions, short reaction times and excellent yields. The yields of the products were in the range 85–100%. Also, the nanocatalyst can be easily recovered with a permanent magnet and reused at least five times without noticeable leaching or loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Chloromethylated polystyrene‐supported macrocyclic Schiff base metal complexes (PS‐L‐M, M = Cu2+, Co2+, Ni2+, and Mn2+) were synthesized and characterized by the methods of IR, ICP, and small area X‐ray photoelectron spectroscopy (XPS). The oxidation of cumene by molecular oxygen in the absence of solvent with the synthesized complexes employed as catalyst was carried out. In comparison with their catalytic activities, PS‐L‐Cu is a more effective catalyst for the oxidation of cumene. The main products are 2‐phenyl‐2‐propanol (PP) and cumene hydroperoxide, which were measured by GC/MS. The influences of reaction temperature, the amount of catalyst, as well as the reaction time on the oxidation of cumene were investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The catalytic activity of magnetically recoverable MIL‐101 was investigated in the oxidation of alkenes to carboxylic acids and cyanosilylation of aldehydes. MIL‐101 was treated with Fe3O4 and the prepared catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, N2 adsorption measurements, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and inductively coupled plasma analysis. The catalytic active sites in this heterogeneous catalyst are Cr3+ nodes of the MIL‐101 framework. This heterogeneous catalyst has the advantages of excellent yields, short reaction times and reusability several times without significant decrease in its initial activity and stability in both oxidation and cyanosilylation reactions. Its magnetic property allows its easy separation using an external magnetic field.  相似文献   

18.
A terbium–organic framework (Tb‐MOF) was prepared using a previously reported procedure. Tb‐MOF was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, powder X‐ray diffraction and surface area analysis. Tb‐MOF was employed as a heterogeneous Lewis acid catalyst for the synthesis of β‐aminoalcohols. Also, the effect of ultrasonic irradiation was examined in the catalytic aminolysis of styrene oxide. The reaction conditions were optimized by variation of reaction time, catalyst concentration and solvent. A variety of β‐aminoalcohols were synthesized and characterized. The Tb‐MOF catalyst showed excellent selectivity and high yield for these transformations.  相似文献   

19.
Metallic nickel nanostructures that were partially decorated by discrete nickel oxide layers were fabricated by in situ reduction of calcinated Ni‐containing layered double hydroxide nanosheets, the structure of which was confirmed by extended X‐ray absorption fine structure spectroscopy, X‐ray photoelectron spectroscopy, and transmission electron microscopy. The existence of the abundant interfaces between the surface Ni oxide overlayer and metallic Ni altered the geometric/electronic structure of the Ni nanoparticles, making them apt for CO activation under light irradiation. Most importantly, the unique structure favors the C?C coupling reaction on its surface, which confers the catalyst unexpected reaction power towards higher hydrocarbons at moderate reaction conditions. This study leads to a green and sustainable approach for the photocatalytic production of highly valuable chemical fuels.  相似文献   

20.
A novel and task‐specific nano‐magnetic Schiff base ligand with phosphate spacer using 2‐aminoethyl dihydrogen phosphate instead of usual coating agents, i.e. tetraethoxysilane and 3‐aminopropyltriethoxysilane, for coating of nano‐magnetic Fe3O4 is introduced. The nano‐magnetic Schiff base ligand with phosphate spacer as a novel catalyst was synthesized and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, derivative thermogravimetry, vibrating sample magnetometry, atomic force microscopy, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray spectroscopy. The resulting task‐specific nano‐magnetic Schiff base ligand with phosphate spacer was successfully employed as a magnetite Pd nanoparticle‐supported catalyst for Sonogashira and Mizoroki–Heck C–C coupling reactions. To the best of our knowledge, this is the first report of the synthesis and applications of magnetic nanoparticles of Fe3O4@O2PO2(CH2)2NH2 as a suitable spacer for the preparation of a designable Schiff base ligand and its corresponding Pd complex. So the present work can open up a new and promising insight in the course of rational design, synthesis and applications of various task‐specific magnetic nanoparticle complexes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号