首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A chiral Schiff base complex has been prepared by treating (R)-1,2-diaminopropane with 3,5-dichlorosalicylaldehyde in ethanol, followed by addition of manganese chloride hexahydrate to generate a homogeneous catalyst, [MnL(Cl)(H2O)] (HMN). Crystal structure of the complex reveals its mononuclear nature. Circular dichroism (CD) studies indicate that the ligand and its corresponding complex contain an asymmetric center. The catalytic activity of HMN toward epoxidation of alkenes, oxidation of alcohols and oxidation of alkanes has been investigated in the presence of iodosylbenzenediacetate (PhI(OAc)2), in acetonitrile. In the present work we found yields to be much higher compared to our previous approaches. For further adaptation, we attached our efficient homogeneous catalyst with surface modified magnetic nanoparticles (Fe3O4@dopa) and thereby obtained a new magnetically separable nanocatalyst Fe3O4@dopa@MnLCl (FDM). This catalyst has been characterized and its oxidation ability assessed in similar conditions as those used for the homogeneous catalyst. Enantiomeric excess in epoxide yield reveals retention of chirality of the active site of Fe3O4@dopa@MnLCl. The catalyst can be recovered by magnetic separation and recycled several times without significant loss of catalytic activity.  相似文献   

2.
Magnetic nanoparticles (MNPs), Fe3O4@SiO2, have been prepared and functionalized by 3-(chloropropyl)trimethoxysilane and then by imidazole to synthesize Fe3O4@SiO2-Im. The functionalized Fe3O4 nanoparticles were used as a support to anchor manganese porphyrin via axial ligation. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, UV–vis spectroscopy, and scanning electron microscopy. Application of immobilized manganese porphyrin as a heterogeneous catalyst in oxidation of alkenes and sulfides was explored. To find suitable reaction conditions, effect of different parameters such as solvent and temperature on immobilization process and also various reaction parameters (oxidant, solvent, and time) on oxidation reactions has been investigated. The results showed that the immobilized Mn-porphyrin on functionalized MNPs is an efficient and reusable catalyst for oxidation of substrates.  相似文献   

3.
Fe3O4-supported copper (II) Schiff-Base complex has been synthesized through post-modification with 1,3-phenylenediamine followed by further post-modification with salicylaldehyde and coordination with Cu(II) ion. The resulted Fe3O4@SiO2-imine/phenoxy-Cu(II) magnetic nanoparticles (MNPs) were characterized by various techniques including SEM, TEM, XRD, XPS, EDX, VSM, FT-IR, and ICP. The catalytic activity as a magnetically recyclable heterogeneous catalyst for one-pot, three-component synthesis of 2-amino-4H-chromene derivatives was examined. The catalyst is efficient in the reaction and can be recovered by magnetic separation and recycled several times without significant loss in the catalytic activity.  相似文献   

4.
A manganese(III) complex, [Mn(phox)2(CH3OH)2]ClO4 (phox?=?2-(2′-hydroxyphenyl)oxazoline), was immobilized on silica-coated magnetic Fe3O4 nanoparticles through the amino propyl linkage using a grafting process in dichloromethane. The resulting Fe3O4@SiO2–NH2@Mn(III) nanoparticles are used as efficient and recyclable catalysts for selective oxidation of thiols to disulfides using urea-hydrogen peroxide as the oxidant. The nanocatalyst was recycled several times. Leaching and recycling experiments revealed that the nanocatalyst can be recovered, recycled, and reused more than five times, without the loss of catalytic activity and magnetic properties. The recycling of the nanocatalyst in six consecutive runs afforded a total turnover number of more than 10,000. The heterogeneous Fe3O4@SiO2–NH2@Mn(III) nanoparticle shows more selectivity for the formation of disulfides in comparison with the homogeneous manganese complex.  相似文献   

5.
A facile procedure was applied to successfully synthesize novel Pd nanoparticles immobilized on triethanolamine-functionalized magnetic nanoparticles [Fe3O4/IL/Pd]. Diverse characterizations (HR-TEM, XRD, FT-IR, TGA, EDX, FE-SEM, ICP, XPS and VSM) were carried out to identify intrinsic traits of the nanoparticles. At room temperature, Fe3O4/IL/Pd demonstrated high catalytic activity toward Suzuki-Miyaura cross-coupling reactions in aqueous solution. Based on the results, Fe3O4/IL/Pd acted as zwitterionic IL-type heterogeneous catalyst, which could be separated from the reaction mixture, conveniently. Moreover, it exhibited excellent recyclability for at least eight cycles without considerable loss of its activity.  相似文献   

6.
The reactivity of zinc and copper oxide nanoparticles was investigated upon their interaction with iron oxides. It was ascertained that, depending on the reaction conditions, nanoparticles of zinc and copper ferrites (ZnFe2O4 and CuFe2O4) or core/shell nanoparticles (Fe3O4/ZnO) are produced. Size, composition, and structure of the resulting nanoparticles were determined by transmission electron microscopy and X-ray diffraction analysis. The average size of zinc and copper ferrite nanoparticles was ascertained to be 9–10 and 2–3 nm, respectively. For core/shell Fe3O4/ZnO nanoparticles, the average size is 20 nm. It was experimentally proved that the photoluminescence radiative characteristics of ZnO nanoparticles are retained in core/shell Fe3O4/ZnO nanoparticles.  相似文献   

7.
A new epoxidation catalyst has been prepared by grafting a molybdenum(VI)–oxodiperoxo complex containing an oxazine ligand, [MoO(O2)2(phox)], on chloro‐functionalized Fe3O4 nanoparticles. The synthesized heterogeneous catalyst (MoO(O2)2(phox)/Fe3O4 was characterized using powder X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and inductively coupled plasma atomic emission spectroscopy. The immobilized complex gave high product yields and high selectivity for epoxide compared to the corresponding homogeneous one in the epoxidation of various olefins in the presence of tert ‐butyl hydroperoxide at 95°C without any co‐solvent. Also, the heterogeneous catalyst can be recycled without a noticeable change in activity and selectivity.  相似文献   

8.
A molybdenum(VI) oxido-diperoxido complex of salicylidene 2-picoloyl hydrazine (sal-phz) was synthesized and successfully grafted onto chloro-functionalised Fe3O4 nanoparticles. The resulting heterogeneous and magnetically recoverable nanoscale catalyst MoO3(sal-phz)/Fe3O4 was characterized by physicochemical and spectroscopic techniques. The activity of this heterogeneous catalyst for the oxidation of olefins to corresponding epoxides was efficiently increased by increasing the reaction temperature up to 95 °C. The nanocatalyst proved to be efficient for the selective epoxidation of a variety of alkenes using t-BuOOH with high conversion and selectivity. Leaching and recycling tests showed that the nanocatalyst can be reused at least six times without significant decrease in efficiency.  相似文献   

9.
N-Salicylidene amino acid Schiff base sodium sulfonate salt, as a tridentate dibasic chelating ligand, was obtained from the common condensation of salicylaldehyde-5-sodium sulfonate with tyrosine (HPST). The internal formed ligand coordinated to Cu2+ ion in an aqueous media affording new Cu (II)-complex (Cu-PST), which characterized by various physico-chemicals spectral tools. The mononuclear complex was evaluated as a homogeneous and heterogeneous catalyst in the (ep)oxidation protocols of 1,2-cyclooctene and benzyl alcohol. Heterogeneously, Cu-PST was immobilized on Fe3O4-SiO2, as nanoparticles. The heterogeneous catalyst was characterized by infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, Brunauer−Emmett−Teller and magnetism. Homogeneously, the temperature, solvent and oxidant influences were examined in the catalytic reactions to realize the best reaction conditions. Cu-catalyst exhibited better catalytic performance in the (ep)oxidation processes homogeneously than that in the heterogeneous phase at 80°C for 2 hr in acetonitrile. Reusability of the homogeneous catalyst was for a maximum of three times in the (ep)oxidation reaction, whereas the heterogeneous catalyst was active for six times. A mechanistic pathway was proposed for both catalysts, comparatively.  相似文献   

10.
To address the obstacles facing the use of palladium‐based homogeneous and heterogeneous catalysts in C─C cross‐coupling reactions, a novel semi‐heterogeneous support was developed based on hyperbranched poly(ethylene glycol)‐block ‐poly(citric acid)‐functionalized Fe3O4 magnetic nanoparticles (Fe3O4@PCA‐b ‐PEG). Because of the surface modification of the Fe3O4 nanoparticles with amphiphilic and hyperbranched polymers (PCA‐b ‐PEG), these hybrid materials are not only soluble in a wide range of solvents (e.g. water, ethanol and dimethylformamide) but also are able to trap Pd2+ ions via complex formation of free carboxyl groups of the PCA dendrimer with metal ions. The reduction of trapped palladium ions in the dendritic shell of Fe3O4@PCA‐b ‐PEG leads to immobilized palladium nanoparticles. The morphology and structural features of the catalyst were characterized using various microscopic and spectroscopic techniques. The catalyst was effectively used in the palladium‐catalysed Mizoroki–Heck coupling reaction in water as a green solvent. In addition, the catalyst can be easily recovered from the reaction mixture by applying an external magnetic field and reused for more than ten consecutive cycles without much loss in activity, exhibiting an example of a sustainable and green methodology.  相似文献   

11.
Fe3O4/chitosan/poly(acrylic acid) (Fe3O4/CS/PAA) composite particles, which are reusable, biodegradable and of high adsorption capacity, have been prepared through polymerizing acrylic acid in chitosan and Fe3O4 nanoparticles aqueous solution. By varying in-feed mole ratio of carboxyl to amino group (nc/na) and reactant concentration, the average diameter of Fe3O4/CS/PAA composite particles can be controlled to vary from 100 to 300 nm. FT-IR, XRD and TEM were used to characterize Fe3O4/CS/PAA composite particles. Results showed that Fe3O4 was indeed incorporated into CS/PAA particles. The composite particles showed high efficient to remove copper ions (II) in aqueous solution. Adsorption kinetic studies showed that the adsorption process followed a pseudo-second-order kinetic model and the equilibrium data agreed well with the Langmuir model. The saturated adsorption capacity obtained from the experimental was 193 mg/g in close to proximity to the data 200 mg/g calculated from Langmuir model. The saturated adsorption capacity still retained 100 mg/g after three cycles of adsorption–desorption of copper ions (II).  相似文献   

12.
Surface functionalization of magnetic nanoparticles is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. We have conveniently loaded sulfonic acid groups on amino‐functionalized Fe3O4 nanoparticles affording sulfamic acid‐functionalized magnetic Fe3O4 nanoparticles (MNPs/DAG‐SO3H) as an active and stable magnetically separable acidic nanocatalyst, which was characterized using X‐ray diffraction, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, scanning and transmission electron microscopies, vibrating sample magnetometry and elemental analysis. The catalytic activity of MNPs/DAG‐SO3H was probed through one‐pot synthesis of N‐substituted pyrroles from γ‐diketones and primary amines in aqueous phase at room temperature. The heterogeneous catalyst could be recovered easily by applying an external magnet device and reused many times without significant loss of its catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, the synthesis of sulfonic acid supported on ferrite–silica superparamagnetic nanoparticles (Fe3O4@SiO2@SO3H) as a nanocatalyst with large density of acidic groups is suggested. This nanocatalyst was prepared in three steps: preparation of colloidal iron oxide magnetic nanoparticles (Fe3O4 MNPs), coating of silica on Fe3O4 MNPs (Fe3O4@SiO2) and incorporation of sulfonic acid as a functional group on the surface of Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2@SO3H). The properties of the prepared magnetic nanoparticles were characterized using transmission electron microscopy, infrared spectroscopy, vibrating sample magnetometry, X‐ray diffraction and thermogravimetric analysis. Finally, the applicability of the synthesized magnetic nanoparticles was tested as a heterogeneous solid acid nanocatalyst for one‐pot synthesis of diindolyloxindole derivatives in aqueous medium. Oxindole derivatives were produced by the coupling of indole and isatin compounds with good to high yields (60–98%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A copper(II) macrocyclic Schiff base complex (ML) was synthesized by condensation between 2,2-dimethylpropane-1,3-diammine and 2,6-diformyl-4-butylphenol with the aim to modify the surface of widely used magnetically separable nanocatalyst Fe3O4@dopa. ML was characterized by physicochemical techniques and single crystal X-ray diffraction. The newly synthesized heterogeneous catalyst Fe3O4@dopa@ML was characterized by SEM, TEM, PXRD, EDX, TGA, etc. ML showed stability in aqueous medium and utilizing this unique property, the heterogeneous catalyst Fe3O4@dopa@ML was used for catalyzing epoxidation, nitroarene reduction and C–C coupling (Henry reaction) in aqueous medium. The separation method of the prepared nano-catalyst is very easy and can be done with an external magnetic field. The experimental findings suggest that Fe3O4@dopa@ML is a versatile “green catalyst.”  相似文献   

15.
Magnetic mesoporous silica nanocomposite, Fe3O4@MCM-41, was prepared and functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS). Then Schiff base grafted nanoparticles were synthesized by the condensation of 5,5'-methylene bis (salicylaldehyde) and then benzhydrazide with Fe3O4@MCM-41-AEAPS. Finally, by adding Cu (CH3COOH)2.H2O, the magnetic nanoparticles (MNPs) functionalized with Cu (II) Schiff base complex were synthesized. The new organic–inorganic hybrid nanocomposite was characterized by FT-IR, PXRD, AAS, BET, TGA, VSM, FE-SEM, HRTEM and EDX techniques. Then, the performance of this copper based magnetic nanocatalyst was investigated for the synthesis of 5-substituted 1H-tetrazole derivatives using one pot three-component reactions of various aldehydes, hydroxyl amine hydrochloride and sodium azide. The catalyst can be easily isolated from the reaction mixture by applying an external magnet and reused for at least 5 times without significant loss in catalytic activity. Also, the antibacterial activity of the streptomycin loaded magnetic nanoparticles against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria in the presence and absence of a magnetic field were studied. Results revealed that when these materials exposed to the magnetic field, bacteriostatic activity of nanocomposites was increased. Furthermore, the enzyme immobilization ability of the synthesized compounds was investigated and the results showed that these nanoparticles efficiently immobilized amylase enzyme.  相似文献   

16.
Fe3O4@SiO2 nanoparticles was functionalized with a binuclear Schiff base Cu(II)‐complex (Fe3O4@SiO2/Schiff base‐Cu(II) NPs) and used as an effective magnetic hetereogeneous nanocatalyst for the N‐arylation of α‐amino acids and nitrogen‐containig heterocycles. The catalyst, Fe3O4@SiO2/Schiff base‐Cu(II) NPs, was characterized by Fourier transform infrared (FTIR) and ultraviolet‐visible (UV‐vis) analyses step by step. Size, morphology, and size distribution of the nanocatalyst were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scatterings (DLS) analyses, respectively. The structure of Fe3O4 nanoparticles was checked by X‐ray diffraction (XRD) technique. Furthermore, the magnetic properties of the nanocatalyst were investigated by vibrating sample magnetometer (VSM) analysis. Loading content as well as leaching amounts of copper supported by the catalyst was measured by inductive coupled plasma (ICP) analysis. Also, thermal studies of the nanocatalyst was studied by thermal gravimetric analysis (TGA) instrument. X‐ray photoelectron spectroscopy (XPS) analysis of the catalyst revealed that the copper sites are in +2 oxidation state. The Fe3O4@SiO2/Schiff base‐Cu(II) complex was found to be an effective catalyst for C–N cross‐coupling reactions, which high to excellent yields were achieved for α‐amino acids as well as N‐hetereocyclic compounds. Easy recoverability of the catalyst by an external magnet, reusability up to eight runs without significant loss of activity, and its well stability during the reaction are among the other highlights of this catalyst.  相似文献   

17.
A heterogeneous catalyst (FeSi/Ag/VO) based on silver and vanadyl as active sites and mesoporous silica‐coated nanospheres of magnetite (Fe3O4@m‐SiO2) as support was successfully prepared by deposition of Ag nanoparticles and the covalent grafting of vanadyl(IV) acetylacetonate on Fe3O4@m‐SiO2. The catalyst exhibited excellent activity for the oxidation of alkanes, benzene and alkylaromatics using green oxidant H2O2 and oxalic acid in acetonitrile at 60 °C.  相似文献   

18.
A magnetically recyclable vanadium(V) catalyst was synthesized by covalent anchoring of VO(salen)Cl on silica-coated Fe3O4 nanoparticles. This straightforward preparation yields magnetically separable Fe3O4@SiO2@VO(salen) nanoparticles with high vanadium loading. These nanoparticles were efficient catalysts for selective oxidation of sulfides to corresponding sulfoxides with urea hydrogen peroxide in excellent yields. Leaching and recycling experiments revealed that the nanocatalyst can be applied for nearly complete oxidation of sulfides for at least five successive cycles.  相似文献   

19.
The present work reports a facile route for ethylenediaminetetraacetic acid (EDTA) immobilization on the surface of amine-terminated Fe3O4 nanoparticles for remediation of heavy metals from aqueous solutions. Transmission electron microscopy images showed both Fe3O4–NH2 and Fe3O4–NH2/PEI-EDTA magnetic nanoparticles with an average diameter of 60 nm. The FT-IR study confirmed the chemical covalent modification of EDTA on the surface of amine-terminated magnetite nanoparticles. XRD analysis demonstrated that the magnetic nanoparticles had a high crystallinity before and after modification. Magnetic measurements indicated that these nanoparticles could be easily removed through external magnetic force. The research work on the adsorption revealed that the concentration of Pb2+ altered from 10 to 0.12 mg/L and it indicated that 98.8% of Pb2+ could be removed from aqueous solutions at pH 5.05, and Fe3O4–NH2/PEI-EDTA loaded heavy metal ions after being treated with 0.1 M HCl could be used as a reusable nano-adsorbent.  相似文献   

20.
Magnetically recoverable and environmentally friendly Cu‐based heterogeneous catalyst has been synthesized for the one‐pot conversion of aldehydes to their corresponding primary amides. The Fe3O4@SiO2 nanocomposites were prepared by synthesis of Fe3O4 magnetic nanoparticles (MNPs) which was then coated with a silica shell via Stöber method. Bi‐functional cysteine amino acid was covalently bonded onto the siliceous shell of nanocatalyst. The CuII ions were then loaded onto the modified surface of nanocatalyst. Finally, uniformly dispersed copper nanoparticles were achieved by reduction of CuII ions with NaBH4. Amidation reaction of aryl halides with electron‐withdrawing or electron‐donating groups and hydroxylamine hydrochloride catalyzed with Fe3O4@SiO2@Cysteine‐copper (FSC‐Cu) MNPs in aqueous condition gave an excellent yield of products. The FSC‐Cu MNPs could be easily isolated from the reaction mixture with an external magnet and reused at least 8 times without significant loss in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号