首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To achieve high-performance n-type PbTe-based thermoelectric materials, this work provides a synergetic strategy to improve electrical transport property with indium (In) element doping and reduces thermal conductivity with sulfur (S) element alloying. In n-type PbTe, In doping can tune the carrier density in the whole working temperature range, causing the carrier density to increase from 2.18 × 1019 cm−3 at 300 K to 4.84 × 1019 cm−3 at 823 K in Pb0.98In0.005Sb0.015Te. The optimized carrier density can further modulate electrical conductivity and Seebeck coefficient, finally contributing to a substantial increase of power factor, and a maximum power factor increase from 19.7 µW cm−1 K−2 in Pb0.985Sb0.015Te to 28.2 µW cm−1 K−2 in Pb0.9775In0.0075Sb0.015Te. Based on the optimally In-doped PbTe, S alloying is introduced to suppress phonon propagation by forming a complete solid solution, which could effectively reduce lattice thermal conductivity and simultaneously benefit carrier mobility to maintain high power factor. With S alloying, the minimum lattice thermal conductivity decreases from 0.76 Wm−1 K−1 in Pb0.985Sb0.015Te to 0.42 Wm−1 K−1 in Pb0.98In0.005Sb0.015Te0.88S0.12. Combining the advantages of both In doping and S alloying, the peak ZT value and averaged ZT (ZTave) (300–873 K) are boosted from 1.0 and 0.60 in Pb0.985Sb0.015Te to 1.4 and 0.87 in Pb0.98In0.005Sb0.015Te0.94S0.06.  相似文献   

2.
Ternary AgSbTe2 materials are frequently reported to show a promising thermoelectric performance, due to the intrinsically low lattice thermal conductivity and complex valence band structure. However, stoichiometric AgSbTe2 is found to be thermodynamically unstable and would partially decompose into Ag2Te and Sb2Te3 during thermal cycling. Instead, Ag0.366Sb0.558Te is the composition for stabilizing the single-phase according to the Ag2Te-Sb2Te3 phase diagram, while the thermoelectric transport properties have rarely been reported and are the focus of this work. Sn/Sb substitution is found to effectively increase not only the carrier concentration from ≈5 × 1019 cm−3 to ≈4 × 1021 cm−3, but also the density-of-states effective mass, leading to an enhanced Seebeck coefficient along with a decreased carrier mobility. Single parabolic band (SPB) model with acoustic phonon scattering enables a good understanding on the charge transport. The increased carrier concentration effectively suppresses the bipolar effect at high temperatures. As a result, a peak zT of ≈1.3 and an average of ≈0.9 are achieved.  相似文献   

3.
Boopathi  G.  Pugalendhi  S.  Selvasekarapandian  S .  Premalatha  M.  Monisha  S.  Aristatil  G. 《Ionics》2017,23(10):2781-2790

A proton-conducting polymer electrolyte based on agar and ammonium nitrate (NH4NO3) has been prepared through solution casting technique. The prepared polymer electrolytes were characterized by impedance spectroscopy, X-ray diffraction, and Fourier transform infra-red spectroscopy. Impedance analysis shows that sample with 60 wt.% NH4NO3 has the highest ionic conductivity of 6.57 × 10−4 S cm−1 at room temperature. As a function of temperature, the ionic conductivity exhibits an Arrhenius behaviour increasing from 6.57 × 10−4 S cm−1 at room temperature to 1.09 × 10−3 S cm−1 at 70 °C. Transport parameters of the samples were calculated using Wagner’s polarization method and thus shows that the increase in conductivity is due to the increase in the number of mobile ions. Fuel cell has been constructed with the highest proton conductivity polymer 40agar/60NH4NO3 and the open circuit voltage is found to be 558 mV.

  相似文献   

4.
Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm−2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm−1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm−1 for TM ions implanted at 5×1014 cm−2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.  相似文献   

5.
The spatial inhomogeneity of pulsed atmospheric pressure discharge in argon is investigated using the electron number density Ne diagnostics procedure applied to asymmetrically broadened Ar I lines. A dedicated fitting procedure is used for describing Ar I 703.0 nm line shape recorded from argon gas discharge and H I (at 486.13 and 656.28 nm) lines recorded from Ar-H2 gas mixture discharge. The results revealed the change in Ne in both axial and radial directions. The additional Ar I lines at 614.5, 710.7, 731.2, and 731.6 nm, recorded from integral spatial radiation, are analysed as well to confirm the results from the plasma column region. The possibility of using AlO (B2+–X2+) and CN (B2+–X2+) molecular bands for gas temperature Tg measurements in this type of gas discharge source is demonstrated and Tg used as an input parameter for the Ne diagnostics procedure. For the proper identification of molecular band spectral lines, the Fortrat parabolas are constructed. The results obtained from Ar I 703.0 nm line indicate three different Ne values, with Ne1 ≈ 0.6 × 1016 cm−3, Ne2 ≈ 3.6 × 1016 cm−3, and Ne3 ≈ 19 × 1016 cm−3 measured from the plasma column. These Ne values increase in the cathode and anode region.  相似文献   

6.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

7.
《Solid State Ionics》2006,177(1-2):95-104
The plastic crystal phase forming N-methyl-N-propylpyrrolidinium tetrafluoroborate organic salt (P13BF4) was combined with 2, 5 and 10 wt.% poly(vinyl pyrrolidone) (PVP). The ternary 2 wt.% PVP/2 wt.% LiBF4/P13BF4 was also investigated. Thermal analysis, conductivity, optical thermomicroscopy, and Nuclear Magnetic Resonance (11B, 19F, 1H, 7Li) were used to probe the fundamental transport processes. Both the onset of phase I and the final melting temperature were reduced with increasing additions of PVP. Conductivity in phase I was 2.6 × 10 4 S cm 1 5.2 × 10 4 S cm 1 1.1 × 10 4 S cm 1 and 3.9 × 10 5 S cm 1 for 0, 2, 5 and 10 wt.%PVP/P13BF4, respectively. Doping with 2 wt.% LiBF4 increased the conductivity by up to an order of magnitude in phase II. Further additions of 2 wt.% PVP slightly reduced the conductivity, although it remained higher than for pure P13BF4.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2611-2615
Mechanical milling (MM) has been used to prepare the nanosized Li1.4Al0.4Ti1.6(PO4)3 (denoted LATP) glassy powders, which was converted into glass-ceramics through thermal treating at 700–1000 °C. The XRD, TEM, FESEM and ac impedance techniques were used to characterize the products. The results showed that completely amorphous products were prepared by MM for 40 h, and single-phase LiTi2(PO4)3-type structured glass-ceramics were obtained by further heat treatment. The lithium ion conductivity of the glass-ceramics increased with the growth of the crystalline phase and decrease of the grain size. The highest bulk conductivity (σb) of 1.09 × 10 3 S cm 1 with an energy of activation as low as 0.28 eV was obtained at room temperature for the specimen treated at 900 °C for 6 h. The high conductivity, easy fabrication and low cost make the LATP glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li-ion rechargeable batteries.  相似文献   

9.
《Applied Surface Science》2005,239(3-4):481-489
The current–voltage (IV) characteristics of Al/SnO2/p-Si (MIS) Schottky diodes prepared by means of spray deposition method have been measured at 80, 295 and 350 K. In order to interpret the experimentally observed non-ideal Al/SnO2/p-Si Schottky diode parameters such as, the series resistance Rs, barrier height ΦB and ideality factor n, a novel calculation method has been reported by taking into account the applied voltage drop across interfacial oxide layer Vi and ideality factor n in the current transport mechanism. The values obtained for Vi were subtracted from the applied voltage values V and then the values of Rs were recalculated. The parameters obtained by accounting for the voltage drop Vi have been compared with those obtained without considering the above voltage drop. It is shown that the values of Rs estimated from Cheung’s method were strongly temperature-dependent and decreased with increasing temperature. It is shown that the voltage drop across the interfacial layer will increase the ideality factor and the voltage dependence of the IV characteristics. The interface state density Nss of the diodes has an exponential growth with bias towards the top of the valance band for each temperature; for example, from 2.37 × 1013 eV−1 cm−2 in 0.70−Ev eV to 7.47 × 1013 eV−1 cm−2 in 0.62−Ev eV for 295 K. The mean Nss estimated from the IV measurements decreased with increasing the temperature from 8.29 × 1013 to 2.20 × 1013 eV−1 cm−2.  相似文献   

10.
Saba Beg 《Phase Transitions》2016,89(2):167-179
New samples of the Bi2Zn0.1xTixV0.9O5.35+x; 0.02 ≤ x ≤ 0.08 system have been synthesized through a standard solid-state reaction route. XRD analysis and differential thermal analysis have been used to characterize the phase structure of samples. The γ′ phase is stabilized to room temperature in all investigated samples. The electrical properties of the BIZNTIVOX system have been studied by using AC impedance spectroscopy. An AC impedance response as a function of frequency (20 Hz–1 MHz) has been used to investigate the electrical conductivity and the dielectric permittivity in the temperature range of 150 °C–700 °C. In this temperature range, the phase transition γ′ to γ has been observed in all the compositions studied. AC impedance spectroscopy indicates that the resistance of samples decreases with increase of temperature. The ionic conductivity of samples appeared as a two-line region in Arrhenius dependence. At 300 °C, the highest ionic conductivity is shown by the composition x = 0.05 (σ300 = 1.35 × 10?4 S cm?1).  相似文献   

11.

In order to check a phenomenon of the negative correlation between ionic and thermal conductivities of solid substances, we studied the thermal conductivity and expansion of cubic PbF2 single crystals at 50–300 and 5.6–317 K, respectively. We found that lead difluoride had a thermal expansion coefficient α that was equal to (28.5 ± 0.3)10−6 K−1 at 300 K, and a thermal conductivity coefficient k(T) was equal to 1.40 ± 0.07 W/(m K) at the same temperature. Thus, the thermal conductivity for PbF2 is the lowest among fluorite-type MF2 (M = Ca, Sr, Ba, Cd, Pb) thermal conductivities, whereas its fluoride-ion conductivity is the highest one among MF2 (M = Ca, Sr, Ba, Cd, Pb) ionic conductors.

  相似文献   

12.
CoSb3纳米热电材料的制备及热传输特性   总被引:6,自引:0,他引:6       下载免费PDF全文
余柏林  唐新峰  祁琼  张清杰 《物理学报》2004,53(9):3130-3135
以Sb,Co为起始原料,采用固相反应法合成了CoSb3.通过高能球磨制得CoSb3纳米粉末,用放电等离子烧结(SPS)方法制备出最小平均晶粒尺寸为150nm的块体材料.研究了晶粒尺寸与热传输性能之间的关系:CoSb3化合物结构纳米化对其晶格热导率κL有显著影响,当晶粒尺寸由微米尺度减小到纳米尺度,晶格热导率κL显著降低,但对载流子热导率κc的影响不甚显著.CoSb3化合物的热导率κ随晶粒尺寸的减小而降 低主要是由于晶格热导率κL随晶粒尺寸的减小而降低所致. 关键词: 纳米 Skutterudite 制备 热传输特性  相似文献   

13.
Defective graphene nanosheets (dGN4V) with 5-9, 5-8-5, and point defects were synthesised by a sonoelectrochemical method, where a potential of 4 V (vs. Ag/AgCl) was applied to drive the rapid intercalation of phosphate ions between the layers of the graphite foil as a working electrode. In addition to these vacancies, double vacancy defects were also created when the applied potential was increased to 8 V (dGN8V). The defect density of dGN8V (2406 μm−2) was higher than that of dGN4V (1786 μm−2). Additionally, dGN8V and dGN4V were applied as catalysts for the hydrogen peroxide reduction reaction (HPRR). The mass activity of dGN8V (1.31 × 10−2 mA·μg−1) was greater than that of dGN4V (1.17 × 10−2 mA·μg−1) because of its high electrochemical surface area (ECSA, 1250.89 m2·g−1) and defect density (ND, 2406 μm−2), leading to low charge transfer resistance on the electrocatalytic interface. The ECSA and ND of dGN4V were 502.7 m2·g−1 and 1786 μm−2, respectively. Apart from its remarkable HPRR activity, the cost-effective dGN8V catalyst also showed potential as an amperometric sensor for the determination of H2O2.  相似文献   

14.
《Solid State Ionics》2006,177(19-25):1897-1900
Ion exchange reactions of the sodium-ion conductor Na0.7Ga4.7Ti0.3O8 were investigated. Exposure to molten LiNO3 at 440 °C for 72 h resulted in a 2% decrease in the unit cell volume, whereas exposure to molten KNO3 under similar conditions had very little effect on the lattice parameters. The electrical conductivity of unexchanged Na0.7Ga4.7Ti0.3O8 ranged from ∼ 10 7 S/cm at 300 °C to 10 3 S/cm at 1000 °C with an activation energy of 0.75 eV. Ion exchange with LiNO3 resulted in an increase in conductivity whereas exchange with KNO3 resulted in a decrease. The differences in conductivity are attributed to differences in the size of the mobile cation.  相似文献   

15.
The concentration and drift mobility of charge carriers in Cu1–x Ti x Fe2O4 ferrite are calculated, over a wide range of temperatures (300–773 K), employing d.c. conductivity and thermoelectric power data. With increasing temperature the concentration of charge carriers decreases whilst the drift mobility exhibits an exponential increase. Over the above-mentioned temperature range, the obtained density of charge carriers varies between 1021 and 1022 cm–3 whereas the drift mobility has values between 10–8 and 10–4 cm2/V s. The results are discussed on the basis of a small-polaron hopping conduction. The activation of the d.c. conductivity has been attributed to the thermal activation of the mobility.  相似文献   

16.
A nanoparticle TiO2 solid-state photoelectrochemical cell utilizing as a solid electrolyte of poly(acrylonitrile)–propylene–carbonate–lithium perchlorate (PAN–PC–LiClO4) has been fabricated. The performance of the device has been tested in the dark and under illumination of 100-mW cm−2 light. A nanoparticle TiO2 film was deposited onto indium tin oxide-covered glass substrate by controlled hydrolysis technique assisted with spin-coating technique. The average grain size for the TiO2 film is 76 nm. LiClO4 salt was used as a redox couple. The room temperature conductivity of the electrolyte is 4.2 × 10−4 S cm−1. A graphite electrode was prepared onto a glass slide by electron beam evaporation technique. The device shows the rectification property in the dark and shows the photovoltaic effect under illumination. The best J sc and V oc of the device were 2.82 μA cm−2 and V oc of 0.58 V, respectively, obtained at the conductivity of 4.2 × 10−4 S cm−1 and intensity of 100 mW cm−2. The J sc was improved by about three times by introducing nanoparticle TiO2 and by using a solid electrolyte of PAN–PC–LiClO4 replacing PVC–PC–LiClO4 in the device. The current transport mechanism of the cell is also presented in this paper.  相似文献   

17.
《Solid State Ionics》2006,177(3-4):395-401
A series of new electrolyte materials based on a molecular plastic crystal doped by different iodide salts together with iodine have been prepared and characterized by thermal analysis, ionic conductivity, electrochemical and solid-state NMR diffusion measurements. In these materials, the plastic crystal phase of succinonitrile acts as a good matrix for the quaternary ammonium based iodides and iodine and appears to act in some cases as a solid-state “solvent” for the binary dopants. The materials were prepared by mixing the components in the molten state with subsequent cooling into the plastic crystalline state. This resulted in waxy-solid electrolytes in the temperature range from − 40 to 60 °C. The combination of structural variation of the cations, and fast redox couple diffusion (comparable with liquid-based electrolytes), as well as a high ionic conductivity of up to 3 × 10 3 S cm 1 at ambient temperature, make these materials very attractive for potential use in solid-state photoelectrochemical cells.  相似文献   

18.
At different frequency range it has been studied the influence of temperature and amount of falling neutrons on nano SiO2 irradiated with neutrons. It has been revealed that it is generated additional electroactive radiation defects under the influence of rays omitted from activation products or direct neutron. Thus, the change of neutron flux at 6.7 × 1017 ∼ 2.7 × 1018 cm−2 s−1 range increases the electric conductivity of nano SiO2 for approximately 30 times. It has been revealed two temperature ranges at temperature dependence of non-irradiated sample and three temperature ranges at a neutron irradiated-sample. It has been put forward the mechanism that explains the obtained results.  相似文献   

19.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

20.
Singh  Manoj K.  Hashmi  S. A. 《Ionics》2017,23(10):2931-2942

We report the studies on quasi-solid battery-supercapacitor (BatCap) systems fabricated using sol–gel-prepared LiFePO4 and its composites (LACs) with activated charcoal (AC) as hybrid cathode and Li4Ti5O12 powder as anode separator by flexible gel polymer electrolyte (GPE) film. The GPE film comprises 1.0 M lithium trifluoromethane sulfonate (LiTf) solution in ethylene carbonate (EC)–propylene carbonate (PC) mixture, immobilized poly(vinylidene fluoride-co-hexafluoro-propylene) (PVdF-HFP), which is of high ionic conductivity (∼3.8 × 10−3 S cm−1 at 25 °C) and electrochemical stability window (∼3 V). The effect of the addition of AC in composite electrode LACs has been analyzed using various techniques such as X-ray diffraction, porosity analysis, and electrochemical methods. The interfaces of composite LACs and GPE film not only offer high rate performance but also show high specific energy (>27.8 Wh kg−1) as compared to the symmetric supercapacitors and pristine lithium iron phosphate (LiFePO4)-based lithium ion batteries. The full BatCap systems have been characterized by cyclic voltammetry and galvanostatic charge–discharge tests. The BatCap systems with composite electrodes (LACs) offer better cyclic performance as compared to that of pristine LiFePO4-based BatCap or LIB LiFePO4/Li4Ti5O12.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号