首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An AlPO4 zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using this framework‐bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g?1 and two perpendicular sets of channels that intersect to give pore space connected by 12‐ring openings along all crystallographic directions.  相似文献   

2.
以拟薄水铝石为铝源、水玻璃为硅源、十六烷基三甲基溴化铵为模板剂,在110℃时水热晶化合成了含Al的MCM-41介孔分子筛.采用X射线衍射(XRD)、N2吸附-脱附、固体29Si、27Al魔角旋转核磁共振技术(MASNMR)、扫描电镜(SEM)及吡啶吸附傅里叶变换红外(FTIR)光谱技术对AlMCM-41分子筛进行了表征.结果表明:AlMCM-41分子筛具有六方排列的孔道结构,同时具有很高的相对结晶度、比表面积和孔容,且孔分布单一;AlMCM-41分子筛中Si原子在骨架内键合的程度更高,使AlMCM-41分子筛具有更好的骨架晶化程度;同时具有四配位骨架铝,使AlMCM-41介孔分子筛具有适当的酸性.  相似文献   

3.
MCM-22分子筛酸性的DFT理论计算研究   总被引:1,自引:0,他引:1  
本文利用量子力学中的密度泛函理论(DFT)计算,研究了MCM-22分子筛上骨架Al在8个不同的T位的分布和Br?nsted酸的落位及强度。所有计算基于分子筛的8T簇模型 (H3SiO)3Si-O(H)-T(OSiH3)3(T=Si,Al),采用DFT的BLYP方法,所有原子均应用DNP基组。通过计算(Al,H)/Si替代能和质子亲和势,得出推论:MCM-22分子筛中骨架Al的最有利落位在T1,T4,T3和T8位。而形成Br?nsted-酸的最可能的位置为Al1-O3-Si4,Al4-O3-Si1,Al3-O11-Si2和Al8-O10-Si2桥基。Al1-O3H-Si4和Al4-O3H-Si1位的酸性强度接近,Al3-O11H-Si2和Al8-O10H-Si2位的酸性分别略低于和略高于前两个酸位。通过计算模板剂分子六次甲基亚胺(HMI)与B-酸中心的相互作用,进一步探讨了HMI对分子筛中Al落位的靶向作用。  相似文献   

4.
Microporous amorphous hydrophobic silica materials with well‐defined pores were synthesized by replication of the metal–organic framework (MOF) [Cu3(1,3,5‐benzenetricarboxylate)2] (HKUST‐1). The silica replicas were obtained by using tetramethoxysilane or tetraethoxysilane as silica precursors and have a micro–meso binary pore system. The BET surface area, the micropore volume, and the mesopore volume of the silica replica, obtained by means of hydrothermal treatment at 423 K with tetraethoxysilane, are 620 m2g?1, 0.18 mL g?1, and 0.55 mL g?1, respectively. Interestingly, the silica has micropores with a pore size of 0.55 nm that corresponds to the pore‐wall thickness of the template MOF. The silica replica is hydrophobic, as confirmed by adsorption analyses, although the replica has a certain amount of silanol groups. This hydrophobicity is due to the unique condensation environment of the silica precursors in the template MOF.  相似文献   

5.
The title compound, tetrasodium cobalt aluminium hexaarsenate, Na4Co7−xAl2/3x(AsO4)6 (x = 1.37), is isostructural with K4Ni7(AsO4)6; however, in its crystal structure, some of the Co2+ ions are substituted by Al3+ in a fully occupied octahedral site (site symmetry 2/m) and a partially occupied tetrahedral site (site symmetry 2). A third octahedral site is fully occupied by Co2+ ions only. One of the two independent tetrahedral As atoms and two of its attached O atoms reside on a mirror plane, as do two of the three independent Na+ cations, all of which are present at half‐occupancy. The proposed structural model based on a careful investigation of the crystal data is supported by charge‐distribution (CHARDI) analysis and bond‐valence‐sum (BVS) calculations. The correlation between the X‐ray refinement and the validation results is discussed.  相似文献   

6.
The role of framework oxygen atoms in N2O decomposition [N2O(g)→N2(g) and 1/2O2(g)] over Fe‐ferrierite is investigated employing a combined experimental (N218O decomposition in batch experiments followed by mass spectroscopy measurements) and theoretical (density functional theory calculations) approach. The occurrence of the isotope exchange indicates that framework oxygen atoms are involved in the N2O decomposition catalyzed by Fe‐ferrierite. Our study, using an Fe‐ferrierite sample with iron exclusively present as FeII cations accommodated in the cationic sites, shows that the mobility of framework oxygen atoms in the temperature range: 553 to 593 K is limited to the four framework oxygen atoms of the two AlO4? tetrahedra forming cationic sites that accomodate FeII. They exchange with the Fe extra‐framework 18O atom originating from the decomposed N218O. We found, using DFT calculations, that O2 molecules facilitate the oxygen exchange. However, the corresponding calculated energy barrier of 87 kcal mol?1 is still very high and it is higher than the assumed experimental value based on the occurrence of the sluggish oxygen exchange at 553 K.  相似文献   

7.
钙掺杂介孔氧化锆的合成及其表征   总被引:1,自引:0,他引:1  
室温下1.5 mmol·L-1硫酸铵溶液体系中,以阳离子型表面活性剂十六烷基三甲基溴化胺为模板,四水硫酸锆为无机前驱体,按照配位体辅助模板机理合成介孔氧化锆前驱体。通过液相后移植工艺实现了钙对氧化锆的掺杂改性。借助XRD、TEM、UV-Vis、XPS、N2吸-脱附及室温荧光光谱(RTPL)等方法对样品进行了表征分析。研究表明,钙离子进入氧化锆骨架结构中,掺杂改性后的氧化锆具有很强的荧光特性,其孔径尺寸在2.2 nm左右。  相似文献   

8.
邢伟  李丽  阎子峰  LU Gao-Qing 《化学学报》2005,63(19):1775-1781
以十二烷基硫酸钠为模板剂, 采用尿素为沉淀剂, 用均匀沉淀法, 适当控制尿素的水解速度, 制备具有介孔结构的氢氧化镍胶体, 在不同温度下焙烧处理得到孔分布集中的氧化镍介孔分子筛. 结果表明, 在523 K下焙烧得到的氧化镍BET比表面达到477.7 m2•g-1. 结构表征还显示, 介孔氧化镍的孔壁为多晶结构, 其孔结构形成机理应为准反胶束模板机理. 循环伏安法表明用NiO介孔分子筛制备的电极有很好的电容性能. 与浸渍法和阴极沉淀法制得的NiO相比, 这种介孔结构的NiO能够大量用来制作电化学电容器电极, 并且保持较高的比电容量和良好的电容性能.  相似文献   

9.
In the title compound, [Cd(C8H4O4)(C10H8N2O2)(H2O)]n, (I), each CdII atom is seven‐coordinated in a distorted monocapped trigonal prismatic coordination geometry, surrounded by four carboxylate O atoms from two different benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, two O atoms from two distinct 4,4′‐bipyridine N,N′‐dioxide (bpdo) ligands and one water O atom. The CdII atom and the water O atom are on a twofold rotation axis. The bpdo and 1,4‐bdc ligands are on centers of inversion. Each crystallographically unique CdII center is bridged by the 1,4‐bdc dianions and bpdo ligands to give a three‐dimensional diamond framework containing large adamantanoid cages. Three identical such nets are interlocked with each other, thus directly leading to the formation of a threefold interpenetrated three‐dimensional diamond architecture. To the best of our knowledge, (I) is the first example of a threefold interpenetrating diamond net based on both bpdo and carboxylate ligands. There are strong linear O—H...O hydrogen bonds between the water molecules and carboxylate O atoms within different diamond nets. Each diamond net is hydrogen bonded to its two neighbors through these hydrogen bonds, which further consolidates the threefold interpenetrating diamond framework.  相似文献   

10.
The title CdII coordination framework, [Cd(C15H8O5)(H2O)]n or [Cd(bpdc)(H2O)]n [H2bpdc is 2‐(4‐carboxybenzoyl)benzoic acid], has been prepared and characterized using IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Each CdII centre is six‐coordinated by two O atoms from one 2‐(4‐carboxylatobenzoyl)benzoate (bpdc2−) ligand in chelating mode, three O‐donor atoms from three other bpdc2− anions and one O atom from a coordinated water molecule in an octahedral coordination environment. Two crystallographically equivalent CdII cations are bridged by one O atom of the 2‐carboxylate group of one bpdc2− ligand and by both O atoms of the 4‐carboxylate group of a second bpdc2− ligand to form a binuclear [(Cd)2(O)(OCO)] secondary building unit. Adjacent secondary building units are interlinked to form a one‐dimensional [Cd(OCO)2]n chain. The bpdc2− ligands link these rod‐shaped chains to give rise to a complex two‐dimensional [Cd(bpdc)]n framework with a 4,4‐connected binodal net topology of point symbol {43.62.8}. The compound exhibits a strong fluorescence emission and typical ferroelectric behaviour in the solid state at room temperature.  相似文献   

11.
酸法纳米纤维素模板剂合成介孔TiO2及光催化活性   总被引:1,自引:0,他引:1  
以生物可再生资源的酸法纳米纤维素为模板剂,四氯化钛为钛源,采用液相水解-沉淀法制备了具有介孔结构的TiO2光催化剂。采用低温N2物理吸附-脱附、透射电镜(TEM)、X射线衍射(XRD)、热重-量热扫描(TG/DSC)、傅里叶变换红外(FTIR)、X射线光电子能谱(XPS)等对介孔TiO2进行了表征,并以甲基橙为模型物,考察了介孔TiO2光催化活性。结果表明,以酸法纳米纤维素为模板剂合成的TiO2光催化活性显著提高,且具有良好的孔隙结构,平均孔径5.03 nm、总孔容积0.35 cm3.g-1、比表面积192m2.g-1;纤维素模板剂合成的TiO2表面羟基数量降低;纤维素长链分子结构之间的羟基与TiO2表面羟基的键合,可有效限制TiO2前驱体的生长和团聚,并抑制锐钛矿相TiO2向金红石相转变。  相似文献   

12.
A crystalline and permanently porous copper phosphonate monoester framework has been synthesized from a tetraaryl trigonal phosphonate monoester linker. This material has a surface area over 1000 m2 g?1, as measured by N2 sorption, the highest reported for a phosphonate‐based metal–organic framework (MOF). The monoesters result in hydrophobic pore surfaces that give a low heat of adsorption for CO2 and low calculated selectivity for CO2 over N2 and CH4 in binary mixtures. By careful manipulation of synthetic conditions, it is possible to selectively remove some of the monoesters lining the pore to form a hydrogen phosphonate while giving an isomorphous structure. This increases the affinity of the framework for CO2 giving higher ambient uptake, higher heat of adsorption, and much higher calculated selectivity for CO2 over both N2 and CH4. Formation of the acid groups is noteworthy as complexation with the parent acid gives a different structure.  相似文献   

13.
This work presents the results of the nanostructural characterisation of the effect of sucrose as a template added to a sol derived from a tetraethoxysilane acid catalysed process. By increasing the sucrose template ratio, N2 adsorption isotherms showed that the xerogel samples changed from a micropore to a mesopore nanostructure as evidenced by the formation of hysteresis at 0.5 partial pressure. In turn, this led to a direct increase in surface areas, pore volumes and average pore sizes. Sucrose has two molecular components of the same molecular weight: D-fructose and D-glucose. D-fructose resulted in the formation of higher pore volumes and pore sizes, while D-glucose formed higher surface area xerogels. Depending of the template ratio employed in the xerogel synthesis, average pore radius ranged from 8.8 to 26 Å, while surface areas increased by over two fold up to 750 m2·g?1. However, pore volumes increased by as much as six fold, from 0.15 to almost 1 cm3·g?1.  相似文献   

14.
The construction of well-defined transition-metal clusters has attracted substantial attention due to their unique chemical and/or physical properties. Metal clusters with 1D or 2D structures are now accessible by template-synthesis methods, in which multiple metal atoms are arranged with the aid of template molecules and their 1D or 2D structures. However, the rational synthesis of 3D clusters remains challenging, mostly due to a lack of appropriate template molecules. Herein, we report the rational synthesis of a 2D butterfly shaped Pd4 framework ( 2 ) and 3D edge-sharing Pd6 tetrahedra ( 5 ) by treatment of easily available organosilicon compounds with Pd(CNtBu)2. The diphenylsilylene moiety thereby serves as the key component to generate the butterfly structure of the Pd4 clusters in 2 . A dimensionality expansion, induced by two Cl atoms, of two butterfly shaped Pd4 subunits supported by two diphenylsilylene moieties afforded the edge-sharing tetrahedral architecture of the Pd6 cluster in 5 .  相似文献   

15.
《化学:亚洲杂志》2017,12(4):470-475
Significant progress has been made on the synthesis and application of mesoporous γ‐alumina. To date, little attention has been paid to the synthesis of microporous crystalline alumina. Here, fabrication of microporous crystalline γ‐alumina using a microporous covalent triazine framework (CTF‐1) as a template is described. Microporous crystalline γ‐alumina with a micro‐meso binary pore system was replicated by infiltration of aluminum nitrate into the micropores of the CTF‐1 template through a NH3/water‐vapor‐induced internal hydrolysis method, followed by thermal treatment, and subsequent removal of the CTF‐1 template with a 30 % H2O2 aqueous solution. The obtained crystalline γ‐alumina material exhibits a large surface area (349 m2 g−1) with micropore distribution centered at about 1.27 nm. Ru supported on microporous γ‐Al2O3 can be employed as catalyst for hydrolytic dehydrogenation of ammonia borane, and it exhibits high catalytic activity and good durability. This finding provides a new benchmark for preparing well‐defined crystalline microporous alumina materials by a template method, which can be applied in a wide range of fields.  相似文献   

16.
In the title compound, poly[hexaaquabis[μ4‐3,5‐bis(carboxylatomethoxy)benzoato]trizinc(II)], [Zn3(C11H7O8)2(H2O)6]n, there are two crystallographically distinct ZnII cations which are bridged by polycarboxylate ligands in a μ4‐bridging mode. A pair of ligands bridges adjacent Zn atoms to give centrosymmetric dimetal building blocks which act as four‐connected nodes to be further interlinked into a two‐dimensional double‐layered framework with (4,4) topology. Other Zn atoms, lying on inversion centres, occupy the cavities of this topological structure. This submission shows a versatile polycarboxylate ligand with rigid and flexible functional groups, the co‐operation and complementarity of which would meet the coordination requirements of a variety of topological structures.  相似文献   

17.
Samples of partially dehydrated and dehydrated Na-X were examined structurally by X-ray diffraction methods, revealing the progressive structural changes which occur as water is removed. In general, the total number of Na atoms in the small pore region remains unchanged by dehydration (ca. 18 per unit cell), as does the total number (non-mobile) in the 12-ring and site III regions (ca. 39). The site II population, however, is more than doubled by dehydration, from about 12 to about 25 Na, accounting for most of the loss from the mobile phase. The 12-ring sites, which in hydrated samples appear to comprise pairs of centrosymmetrically related [Na(H2O)2]+ units, rearrange during dehydration, with site III becoming an important location of Na atoms. At intermediate levels of dehydration, the remaining localized water molecules in the 12-ring region are found in a variety of associations with Na atoms, including perhaps as [Na(H2O)5]+ units whose Na atom occupies site III. In a sample containing H3O+ ions as well as Na+ as counter ions, site II was found to have a very low occupancy.  相似文献   

18.
Colourless crystals of the title compound, [Cd2(C7H4IO2)4(C12H10N2)(H2O)2]n, were obtained by the self‐assembly of Cd(NO3)2·4H2O, 1,2‐bis(pyridin‐4‐yl)ethene (bpe) and 4‐iodobenzoic acid (4‐IBA). Each CdII atom is seven‐coordinated in a pentagonal–bipyramidal coordination environment by four carboxylate O atoms from two different 4‐IBA ligands, two O atoms from two water molecules and one N atom from a bpe ligand. The CdII centres are bridged by the aqua molecules and bpe ligands, which lie across centres of inversion, to give a two‐dimensional net. Topologically, taking the CdII atoms as nodes and the μ‐aqua and μ‐bpe ligands as linkers, the two‐dimensional structure can be simplified as a (6,3) network.  相似文献   

19.
In the title compound, [Mn(C5H2N2O4)(H2O)2]n, the MnII ion has a distorted octahedral geometry and the 4‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (Hiso2−) anion acts as a μ34‐bridging ligand. Two oxo O atoms from different Hiso2− ligands bridge two MnII ions, forming centrosymmetric dinuclear building blocks. Each dinuclear building block interacts with another four by the coordination of the oxide groups and carboxylate O atoms, producing a two‐dimensional framework in the ab plane. Hydrogen bonds further extend the two‐dimensional sheets into a three‐dimensional supramolecular framework.  相似文献   

20.
The asymmetric unit in the structure of the title compound, [K2(C9H4O9S)(H2O)2]n, consists of two eight‐coordinated KI cations, one 2,4‐dicarboxy‐5‐sulfonatobenzoate dianion (H2SBTC2−), one bridging water molecule and one terminal coordinated water molecule. One KI cation is coordinated by three carboxylate O atoms and three sulfonate O atoms from four H2SBTC2− ligands and by two bridging water molecules. The second KI cation is coordinated by four sulfonate O atoms and three carboxylate O atoms from five H2SBTC2− ligands and by one terminal coordinated water molecule. The KI cations are linked by sulfonate groups to give a one‐dimensional inorganic chain with cage‐like K4(SO3)2 repeat units. These one‐dimensional chains are bridged by one of the carboxylic acid groups of the H2SBTC2− ligand to form a two‐dimensional layer, and these layers are further linked by the remaining carboxylate groups and the benzene rings of the H2SBTC2− ligands to generate a three‐dimensional framework. The compound displays a photoluminescent emission at 460 nm upon excitation at 358 nm. In addition, the thermal stability of the title compound has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号