首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2023,34(8):108093
Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, we designed a novel dual-emissive fluorescence nanoplatform for ATP sensing based on red emissive europium metal-organic framework (Eu-MOF) and blue emissive gold nanoclusters (AuNCs). The presence of ATP causes the decomposition of Eu-MOF owing to strong affinity of Eu3+ with ATP. As a result, the red emission of Eu-MOF decreases while the blue emission of AuNCs remains unchanged. The distinct red/blue emission intensity change enables the establishment of a ratiometric fluorescent and visual sensor of ATP. Moreover, a fluorescent paper-based sensor was fabricated with the ratiometric ATP probes, which enabled easy-to-use and visual detection of ATP in serum samples with a smartphone.  相似文献   

2.
Peroxynitrite (ONOO) as a major reactive oxygen species plays important roles in cellular signal transduction and homeostatic regulation. Precise detection of ONOO in biological systems is vital for exploring its physiological and pathological function. Among numerous detection methods, fluorescence imaging technology using fluorescent probes offers some advantages, including simple operation, high sensitivity and selectivity, as well as real-time and nondestructive detection. In particular, ratiometric fluorescent probes, in which the built-in calibration of the two emission bands prevents interference from the biological environment, have been extensively employed to monitor the fluctuation of bioactive species. In this review, we will discuss small-molecule ratiometric fluorescent probes for ONOO in live cells or in vivo, which involves chemical structures, response mechanisms, and biological applications. Moreover, the challenges and future prospects of ONOO-responsive ratiometric fluorescent probe are also proposed.  相似文献   

3.
A ratiometric fluorescent probe for H2S was developed based on a coumarin– benzopyrylium platform. The ratiometric sensing is realized by a selective conversion of acyl azide to the corresponding amide, which subsequently undergoes an intramolecular spirocyclization to alter the large π-conjugated system of CB fluorophore. Compared with the traditional azide-based H2S probes, the proposed probe utilizes the acyl azide as the recognition moiety and exhibits a rapid response (∼1 min) towards H2S, which is superior to most of the azide-based H2S probes. Preliminary fluorescence imaging experiments show that probe 1 has potential to track H2S in living cells.  相似文献   

4.
New ratiometric two-photon fluorescent probes are developed from 6-substituted quinolines for biological Zn(2+) detection. They show large red shifts and good ratiometric responses upon Zn(2+) binding. They also exhibit high ion selectivities and large two-photon absorption cross sections at nearly 720 nm. Because the new probes are cell-permeable, they can be used to detect intracellular zinc flux under two-photon excitation.  相似文献   

5.
A colorimetric and ratiometric fluorescent thiol probe was devised with diketopyrrolopyrrole (DPP) fluorophore. The probe gives absorption and emission at 523 and 666 nm, respectively. In the presence of thiols, such as cysteine, the absorption and emission band shifted to 479 and 540 nm, respectively. Correspondingly, the color of the probe solution changed from purple to yellow, and the fluorescence changed from red to yellow. The emission intensity at 540 nm was enhanced by 140-fold. The Stokes shift of probe 1 (107 nm) is much larger than the unsubstituted DPP fluorophore (56 nm). Mass spectral analysis demonstrated that besides the expected Michael addition of thiols to the C═C bonds, the CN groups of the malonitrile moieties also react with thiols to form 4,5-dihydrothiazole structure. Probe 1 was used for fluorescence imaging of intracellular thiols. In the presence of thiols, both the green and red channel of the microscopy are active. With removal of the intracellular thiols, signal can only be detected through the red channel; thus, ratiometric bioimaging of intracellular thiols was achieved. The ratiometric response of probe 1 was rationalized by DFT calculations. Our complementary experimental and theoretical studies will be useful for design of ratiometric/colorimetric molecular probes.  相似文献   

6.
Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1 – K4 ). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2 , 4 , 5 , 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different Kd values for an intra- or extracellular Na+ analysis. Thus, we found that 2 , 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (Kd=106 mm ) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (Kd=78 mm ) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.  相似文献   

7.
《Tetrahedron letters》2019,60(26):1696-1701
As an important parameter of intracellular metabolism, pH plays important roles in maintaining normal physiological processes. The abnormal pH could cause disorder of cell function which may cause neurological diseases. Herein, we present two novel ratiometric fluorescent probes to detect pH changes. The probes employed 2-(2′-hydroxyphenyl)benzothiazole as fluorescent platform, and displayed desirable fluorescence response to pH on the basis of excited state intramolecular proton transfer (ESIPT) process. The probe BtyC-1 showed green fluorescence at 546 nm under acidic conditions, while it displayed strong blue fluorescence at 473 nm and weak green fluorescence at 546 nm under alkaline conditions. Biological experiments demonstrated that the probe BtyC-1 could be successfully applied for the ratiometric imaging of cellular pH and the NH4Cl-induced pH changes in living cells.  相似文献   

8.
A novel fluorescent ratiometric chemosensor based on 4-pyren-1-yl-pyrimidine (PPM) has been designed and prepared for the detection of Hg2+ in the presence of other competing metal ions in acetonitrile. The photo exhibits fluorescence color change of PPM from blue to green without and with Hg2+, which red shift of wavelength about 105 nm in fluorescence emission spectra. It can serve as a highly selective chemodosimeter for Hg2+ with ratiometric and naked-eye detection. The photophysical properties of PPM confirmed a 2:1 (PPM–Hg2+) binding model and the spectral response toward Hg2+ was proved to be reversible.  相似文献   

9.
Lysosomal polarity is considered a key indicator of lysosomal function due to its significant impact on membrane fluidity and enzymatic reactions in lysosomes. Monitoring lysosomal polarity can gain insight into the related physiological and pathological processes and develop new diagnostic methods. However, current fluorescent probes with lysosomal polarity response suffer from narrow linear range, photobleaching and complicated preparation. Herein, a ratiometric fluorescent probe(r-b CDs) for ...  相似文献   

10.
Novel ratiometric, near-infrared fluorescent pH probes with various pK(a) values have been designed and synthesized on the basis of aminocyanine bearing a diamine moiety, and their photochemical properties were evaluated. Under acidic conditions, these pH probes showed a 46- to 83-nm red shift of the absorption maximum. This change is sufficiently large to permit their use as ratiometric pH probes, and is reversible, whereas monoamine-substituted aminocyanines showed irreversible changes because of their instability under acidic conditions. Furthermore, the pK(a) values of these probes can be predicted from the calculated pK(a) values of the diamine moieties, obtained from the SciFinder database. This design strategy is very simple and flexible, and should be applicable to develop NIR pH probes for various applications.  相似文献   

11.
Ratiometric fluorescent probes are of great importance in research, because a built‐in correction for environmental effects can be provided to reduce background interference. However, the traditional ratiometric fluorescent probes require two luminescent materials with different emission bands. Herein a novel ratiometric probe based on a single‐wavelength‐emitting material is reported. The probe works by regulating the luminescent property of graphene quantum dots with UV illumination as activator. The ratiometric sensor shows high sensitivity and specificity for iron ions. Moreover, the ratiometric sensor was successfully employed to monitor ferritin levels in Sprague Dawley rats with chemical‐induced acute liver damage. The proposed single‐wavelength ratiometric fluorescent probe may greatly broaden the applicability of ratiometric sensors in diagnostic devices, medical applications, and analytical chemistry.  相似文献   

12.
Fluorescence ratio imaging is currently being used to quantitatively detect biologically active molecules in biosystems; however, two excitations of most existing fluorescent ratiometric probes account for cumbersome operating conditions for imaging. Thus, a fluorescent ratiometric probe, 6‐methoxyquinolinium–dansyl (MQ‐DS), for Cl? with single excitation/dual maximum emission has been developed. MQ‐DS can preferably localize into lysosomes and display excellent photostability. Upon excitation at a single wavelength, it responds precisely and instantaneously to changes in Cl? concentrations, and it can be conveniently utilized to implement real‐time fluorescence ratio imaging to quantitatively track alterations in Cl? levels inside cells treated under various pH conditions, and also in zebrafish with acute wounds. The successful application of the new probe in bioimaging may greatly facilitate a complete understanding of the physiological functions of Cl?.  相似文献   

13.
Dual-excitation ratiometric fluorescent probes allow the measurement of fluorescence intensities at two excitation wavelengths, which should provide a built-in correction for environmental effects. However, most of the small-molecule dual-excitation ratiometric probes that have been reported thus far have shown rather limited separation between the excitation wavelengths (20-70 nm) and/or a very small molar absorption coefficient at one of the excitation wavelengths. These shortcomings can lead to cross-excitation and thus to errors in the measurement of fluorescence intensities and ratios. Herein, we report a FRET-based molecular strategy for the construction of small-molecule dual-excitation ratiometric probes in which the donor and acceptor excitation bands exhibit large separations between the excitation wavelengths and comparable excitation intensities, which is highly desirable for determining the fluorescence intensities and signal ratios with high accuracy. Based on this strategy, we created a coumarin-rhodamine FRET platform that was then employed to develop the first class of FRET-based dual-excitation ratiometric pH probes that have two well-resolved excitation bands (excitation separations>160 nm) and comparable excitation intensities. In addition, these pH probes may be considered as in a kind of "secured ratioing mode". As a further application of these pH probes, the dual-excitation ratiometric pH probes were transformed into the first examples of photocaged dual-excitation ratiometric pH probes to improve the spatiotemporal resolution. It is expected that the modular nature of our FRET-based molecular strategy should render it applicable to other small-molecule dual-dye energy-transfer systems based on diverse fluorescent dyes for the development of a wide range of dual-excitation ratiometric probes with outstanding spectral features, including large separations between the excitation wavelengths and comparable excitation intensities.  相似文献   

14.
BODIPY‐based fluorescent chemosensors bearing sulfoxide function were designed and evaluated. Thiols triggered sulfoxide→sulfide transduction in these probes leads to an obvious red‐shift in absorption and dramatic fluorescence enhancement with distinctly ratiometric features, enabling the accurate assay of thiols in living cells.  相似文献   

15.
A facile reprecipitation-encapsulation method is used for the preparation of ratiometric fluorescent nanoparticles (NPs) for sensing intracellular oxygen. The surface of the NPs is modified in-situ with poly-L-lysine, which renders good biocompatibility and enables easy internalization into living cells. The sensor NPs contain a red fluorescent probe whose fluorescence is sensitive to oxygen with a quenching response of 77 % on going from nitrogen saturation to oxygen saturation, and a reference dye giving a green signal that acts as an oxygen-independent reference. The ratio of the two emissions serves as the analytical information and is sensitive to dissolved oxygen in the 0–43?ppm concentration range. When incorporated into cells, the ratio of the signals increases by 400?% on going from oxygen-saturated to oxygen-free environment.
Figure
Dissolved oxygen could be visually detected using the ratiometric nanoparticles. Under single-wavelength excitation, red fluorescence is highly sensitive to oxygen, whereas green fluorescence keeps constantly.  相似文献   

16.
Novel ratiometric fluorescent probes for Zn2+ in the near-infrared region, based on a tricarbocyanine chromophore, have been designed, synthesized, and evaluated. Upon addition of Zn2+, a 44 nm red shift of the absorption maximum was observed, which indicates that this probe could work as a ratiometric probe for Zn2+. This change is due to the difference in the electron-donating ability of the amine substituent before and after reaction with Zn2+. This fluorescence modulation of amine-substituted tricarbocyanines should be applicable to dual-wavelength measurement of various biomolecules or enzyme activities.  相似文献   

17.
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10–23 or Zn2+-specific 8–17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.  相似文献   

18.
Guangjie He  Cheng He 《Tetrahedron》2010,66(51):9762-9768
A system based on FRET mechanism, comprising a coumarin donor and a rhodamine acceptor, was developed for the selective and quantitative detection of metal ions. Fluorescent chemosensors RCs, linked by 1,2-diethylamine, exhibit significant fluorescence enhancement and excellent selectivity toward Cu2+. Fluorescent probes CRB and CR6G, linked by hydrazide, function as ratiometric receptors for Cu2+ chromogentically and fluorogentically in organic-aqueous media. Furthermore, the characteristic rhodamine-based fluorescence response of CRB (excitation at 550 nm) exhibits high selectivity for Hg(II). The construction of this kind of universal FRET system opens a broader prospect for future design of ratiometric fluorescent probes.  相似文献   

19.
The sensitivity as well as dynamic range of a ratiometric probe is determined by the ratio of emission intensities at two wavelengths. Thus, it is highly desirable to acquire a large ratiometric fluorescence response at two wavelengths. However, ratiometric fluorescent signals are intrinsic characteristics of the particular probe-analyte interactions. The design for fluorescent probes with a large ratiometric signal remains a challenging task. There is still a lack of a proper approach to enhance the ratiometric fluorescence response for fluorescent chemodosimeters. Herein, we introduced a novel strategy to increase the emission ratios of a chemodosimeter via modulation of intramolecular charge transfer.  相似文献   

20.
To detect trace trinitrotoluene (TNT) explosives deposited on various surfaces instantly and on-site still remains a challenge for homeland security needs against terrorism. This work demonstrates a new concept and its utility for visual detection of TNT particulates on various package materials. The concept takes advantages of the superior fluorescent properties of quantum dots (QDs) for visual signal output via ratiometric fluorescence, the feasibility of surface grafting of QDs for chemical recognition of TNT, and the ease of operation of the fingerprint lifting technique. Two differently sized CdTe QDs emitting red and green fluorescences, respectively, have been hybridized by embedding the red-emitting one in silica nanoparticles and covalently linking the green-emitting one to the silica surface, respectively, to form a dual-emissive fluorescent hybrid nanoparticle. The fluorescence of red QDs in the silica nanoparticles stays constant, whereas the green QDs functionalized with polyamine can selectively bind TNT by the formation of Meisenheimer complex, leading to the green fluorescence quenching due to resonance energy transfer. The variations of the two fluorescence intensity ratios display continuous color changes from yellow-green to red upon exposure to different amounts of TNT. By immobilization of the probes on a piece of filter paper, a fingerprint lifting technique has been innovated to visualize trace TNT particulates on various surfaces by the appearance of a different color against a yellow-green background under a UV lamp. This method shows high selectivity and sensitivity with a detection limit as low as 5 ng/mm(2) on a manila envelope and the attribute of being seen with the naked eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号