首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This critical review deals with the applications of nanocatalysts in Suzuki coupling reactions, a field that has attracted immense interest in the chemical, materials and industrial communities. We intend to present a broad overview of nanocatalysts for Suzuki coupling reactions with an emphasis on their performance, stability and reusability. We begin the review with a discussion on the importance of Suzuki cross-coupling reactions, and we then discuss fundamental aspects of nanocatalysis, such as the effects of catalyst size and shape. Next, we turn to the core focus of this review: the synthesis, advantages and disadvantages of nanocatalysts for Suzuki coupling reactions. We begin with various nanocatalysts that are based on conventional supports, such as high surface silica, carbon nanotubes, polymers, metal oxides and double hydroxides. Thereafter, we reviewed nanocatalysts based on non-conventional supports, such as dendrimers, cyclodextrin and magnetic nanomaterials. Finally, we discuss nanocatalyst systems that are based on non-conventional media, i.e., fluorous media and ionic liquids, for use in Suzuki reactions. At the end of this review, we summarise the significance of nanocatalysts, their impacts on conventional catalysis and perspectives for further developments of Suzuki cross-coupling reactions (131 references).  相似文献   

2.
Zn-mediated, Pd-catalyzed cross-coupling reactions between heteroaromatic and alkyl halides can be done at room temperature in pure water using a commercially available Pd catalyst and PTS, a nanomicelle-forming amphiphile. Notably, zinc metal inserts selectively into a carbon sp3-halide bond, while palladium adds oxidatively to a carbon sp2-bond.  相似文献   

3.
The hollow Pd–PVP–Fe nanosphere and Fe–PVP nanoparticle catalysts were synthesized by thermal method. Mixing of two metallic nanocatalysts was applied in the Csp–S cross-coupling reactions between diphenyl disulfide and phenylacetylene under mild conditions in water. Results show that bi-catalytic system has higher catalytic efficiencies than their monocatalytic systems due to synergy between two catalysts. Order of adding two metallic catalysts were adjusted into the coupling reaction medium. Therefore, various bi-catalytic systems were obtained and characterized by XRD, SEM, EBSD, EDX, UV–Vis spectra, and particle size analyzer. Under special order of adding, the obtained hollow nanoshell-sphere Fe@Fe/Pd reactor showed higher catalytic activity in the coupling reaction compared to other bi-catalytic systems. The Csp–S coupling products obtained of various diaryl disulfides and phenylacetylene at presence Fe@Fe/Pd (only 7.3?×?10?5 mmol Pd) catalyst with moderate to high yields in water solvent and mild reaction conditions. After the reaction, the catalyst/product(s) separation could be easily achieved with an external magnet and more than 95% of catalyst could be recovered. The recovered catalyst was characterized by XRD, SEM, EBSD, EDX, and UV–Vis spectra. The Fe@Fe/Pd was reused at least six repeating cycles without any loss of its high catalytic activity. Tuning morphology and chemical composition of bi-catalytic system are key mainstays of high activity of Fe@Fe/Pd in repeating cycles of cross-coupling reactions.  相似文献   

4.
Hui Liu 《Tetrahedron letters》2008,49(48):6924-6928
Cyclization-oxidation of Baylis-Hillman adducts provides a convenient method to stereoselectively synthesize variety of multi-substituted bicyclo[3.1.0] ring systems via Pd(II)/Pd(IV)-catalyzed reactions. We also disclose that C-Pd(IV) intermediate can undergo reductive elimination through SN2-type attack by the latent nucleophile of vinyl acetate to afford Csp3-Csp3 bond formation with inversion of configuration at the Pd(IV)-bounded carbon.  相似文献   

5.
Nanodiamond–graphene core–shell materials have several unique properties compared with purely sp2‐bonded nanocarbons and perform remarkably well as metal‐free catalysts. In this work, we report that palladium nanoparticles supported on nanodiamond–graphene core–shell materials (Pd/ND@G) exhibit superior catalytic activity in CO oxidation compared to Pd NPs supported on an sp2‐bonded onion‐like carbon (Pd/OLC) material. Characterization revealed that the Pd NPs in Pd/ND@G have a special morphology with reduced crystallinity and are more stable towards sintering at high temperature than the Pd NPs in Pd/OLC. The electronic structure of Pd is changed in Pd/ND@G, resulting in weak CO chemisorption on the Pd NPs. Our work indicates that strong metal–support interactions can be achieved on a non‐reducible support, as exemplified for nanocarbon, by carefully tuning the surface structure of the support, thus providing a good example for designing a high‐performance nanostructured catalyst.  相似文献   

6.
Dendritic Pd catalysts, dendrimer-stabilized Pd nanoparticle (PdNP) catalysts, and their comparison and combined use for carbon–carbon coupling reactions are discussed with emphasis on the research carried out in the author’s laboratory during the last decade. Multinuclear star-shaped catalysts rather than dendritic catalysts can reach the efficiency of the best monometallic catalysts, whereas PdNPs stabilized by dendrimers can react with turnover numbers close to 106 and bring useful mechanistic indications. In both areas, leaching issues are examined. Finally, results of the literature in asymmetric Pd catalysis by chiral dendrimers and Pd nanoparticles stabilized by chiral ligands are also reviewed, revealing the importance of the dendritic and molecular ligand design and the role of leaching Pd atoms.  相似文献   

7.
陈维民 《化学进展》2012,(Z1):246-252
低温燃料电池是理想的移动式电源,它所采用的电催化剂主要为Pt基贵金属纳米催化剂。提高纳米催化剂在电池内部环境中的稳定性、抑制其活性衰减,对于延长低温燃料电池的使用寿命和节约成本具有十分重要的意义。本文从三个方面综述了近年来在低温燃料电池纳米催化剂稳定化方面的研究进展。首先,通过载体效应实现催化剂的稳定化,包括碳载体的石墨化、碳载体的掺杂、表面功能化及其他载体的采用等。其次,通过空间效应实现催化剂的稳定化,包括催化剂粒子表面覆盖、催化剂粒子微孔嵌入、催化剂表面杂多酸单层自组装及聚合物电解质空间阻隔等。再其次,通过协同效应实现催化剂的稳定化,包括提升金属粒子的氧化电位、强化组分间的相互作用等。最后,对低温燃料电池纳米催化剂稳定化的发展前景进行了展望。  相似文献   

8.
Reported herein is a novel visible‐light photoredox system with Pd(PPh3)4 as the sole catalyst for the realization of the first direct cross‐coupling of C(sp3)−H bonds in N‐aryl tetrahydroisoquinolines with unactivated alkyl bromides. Moreover, intra‐ and intermolecular alkylations of heteroarenes were also developed under mild reaction conditions. A variety of tertiary, secondary, and primary alkyl bromides undergo reaction to generate C(sp3)−C(sp3) and C(sp2)−C(sp3) bonds in moderate to excellent yields. These redox‐neutral reactions feature broad substrate scope (>60 examples), good functional‐group tolerance, and facile generation of quaternary centers. Mechanistic studies indicate that the simple palladium complex acts as the visible‐light photocatalyst and radicals are involved in the process.  相似文献   

9.
Chemoselective reduction of the C=C bond in a variety of α,β‐unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2: 1) nano‐Pd on a metal–organic framework (MOF: Pd0‐MIL‐101‐NH2(Cr)), 2) nano‐Pd on a siliceous mesocellular foam (MCF: Pd0‐AmP‐MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd0‐MIL‐101‐NH2(Cr) and Pd0‐AmP‐MCF were capable of delivering the desired products in very short reaction times (10–90 min) with low loadings of Pd (0.5–1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching.  相似文献   

10.
Recent advances in CpxMIII catalysis (M=Co, Rh, Ir) have enabled a variety of enantioselective C(sp2)?H functionalization reactions, but enantioselective C(sp3)?H functionalization is still largely unexplored. We describe an asymmetric C(sp3)?H amidation of thioamides using an achiral CoIII/chiral carboxylic acid hybrid catalytic system, which provides easy and straightforward access to chiral β‐amino thiocarbonyl and β‐amino carbonyl building blocks with a quaternary carbon stereocenter.  相似文献   

11.
Low cost, high activity and selectivity, convenient separation, and increased reusability are the main requirements for noble‐metal‐nanocatalyst‐catalyzed reactions. Despite tremendous efforts, developing noble‐metal nanocatalysts to meet the above requirements remains a significant challenge. Here we present a general strategy for the preparation of strongly coupled Fe3O4 and palladium nanoparticles (PdNPs) to graphene sheets by employing polyethyleneimine as the coupling linker. Transmission electron microscopic images show that Pd and Fe3O4 nanoparticles are highly dispersed on the graphene surface, and the mean particle size of Pd is around 3 nm. This nanocatalyst exhibits synergistic catalysis by Pd nanoparticles supported on reduced graphene oxide (rGO) and a tertiary amine of polyethyleneimine (Pd/Fe3O4/PEI/rGO) for the Tsuji–Trost reaction in water and air. For example, the reaction of ethyl acetoacetate with allyl ethyl carbonate afforded the allylated product in more than 99 % isolated yield, and the turnover frequency reached 2200 h?1. The yield of allylated products was 66 % for Pd/rGO without polyethyleneimine. The catalyst could be readily recycled by a magnet and reused more than 30 times without appreciable loss of activity. In addition, only about 7.5 % of Pd species leached off after 20 cycles, thus rendering this catalyst safer for the environment.  相似文献   

12.
邹璐  邓超  高颖  邬冰 《燃料化学学报》2015,43(4):507-512
制备了导电高分子聚苯胺与活性炭的复合载体(PAnC),用PAnC作为载体制备的钯催化剂性能优于单独活性炭作为载体制备的催化剂。此外掺杂十二烷基磺酸钠制备的聚苯胺碳载体(PAnC-S)具有比PAnC更低的电荷传递电阻,10~25 nm的介孔数量明显增加,比表面积增大到94.9 m2/g。PAnC-S与PAnC粒径均匀,粒径均在30 nm左右。以PAnC-S和 PAnC为载体制备的钯催化剂比活性炭作载体制备的钯催化剂具有更大的电化学比表面积,分别为84.7和62.6 m2/g。对甲酸的氧化具有更高的电化学活性和稳定性。  相似文献   

13.
The possible practical limits for the specific surface area and capacitance performance of bulk sp~2 carbon materials were investigated experimentally and theoretically using a variety of carbon materials. We find the limit for the specific surface area to be 3500–3700 m~2 g~(-1), and based on this, the corresponding best capacitance was predicted for various electrolyte systems. A model using an effective ionic diameter for the electrolyte ions was proposed and used to calculate the theoretical capacitance. A linear dependence of experimental capacitance versus effective specific surface area of various sp~2 carbon materials was obtained for all studied ionic liquid, organic and aqueous electrolyte systems. Furthermore, excellent agreement between the theoretical and experimental capacitance was observed for all the tested sp~2 carbon materials in these electrolyte systems, indicating that this model can be applied widely in the evaluation of various carbon materials for supercapacitors.  相似文献   

14.
A simple and effective strategy is described for the synthesis of Pd–CdS nanopowder by the reduction of an organopalladium(II) complex, [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), in the presence of CdS quantum dots (QDs) at a toluene–water interface. We investigated the impact of addition of CdS QDs on catalytic activity of Pd nanoparticles (NPs). The Pd–CdS nanopowder functions as an efficient catalyst for Suzuki–Miyaura reactions for the formation of carbon–carbon bonds. There is a high electron density on Pd NPs and due to their high electron affinity they behave as an electron scavenger from CdS increasing the rate of oxidative addition, which is the rate‐determining step of the catalytic cycle, and, just as we expect, the C─C coupling reaction with the Pd–CdS nanopowder is faster and occurs in less time than that with Pd nanocatalysts. Compared to classical reactions, this method consistently has the advantages of short reaction times, high yields in a green solvent, reusability of the catalyst without considerable loss of catalytic activity and low cost, and is a facile method for the preparation of the catalyst.  相似文献   

15.
We have successfully prepared 6.5 nm palladium tin (PdSn) alloy nanoparticles (NPs) with tunable compositions by high‐temperature reduction of tin acetate and palladium bromide in the presence of oleylamine and trioctylphosphine. The catalytic activities of PdSn NPs with different compositions were evaluated through Suzuki reactions. The PdSn nanocatalysts show better catalytic activity on Suzuki reactions than an equal amount of pure Pd NPs, and their catalytic activities are highly composition dependent. Among these NPs, Pd63Sn37/C NPs exhibited the highest catalytic performance with higher reaction activity, lower Pd leaching properties, and higher stability even after eight recycle reactions.  相似文献   

16.
Heteropoly acids(HPA) are well known for their versatile solid acid catalysis in diverse chemical reactions, however they suffer from low surface area(10 m~2/g) and leaching into the reactions media, which reduce their prospects as industrial catalyst.Herein, a novel hybrid material HPW@Zr-BTC,composed of 12-tungstophoric acid(HPW) and Zr~(Ⅳ)-benzene tri-carboxylate(Zr-BTC) metal-organic framework(MOF), was prepared via one-pot solvothermal method. Excellent HPW loading up to 32.3 wt% was achieved, and HPW@Zr-BTC composite proved to be highly stable, besides the crystalline morphology of Zr-BTC was intact. The catalytic activity of the hybrid composite was explored via Friedel-Crafts acylation of anisole with benzoyl chloride.The 28.2 wt% HPW@Zr-BTC showed excellent catalytic performance, with 99.4% anisole conversion and 97.6% yield(pmethoxybenzophenone) under solvent free conditions. Excellent retention of catalytic activity was achieved after at least five consecutive runs due to non-observable HPW leaching. The promising activity and stability of the catalyst forecasted its potential industrial applications.  相似文献   

17.
The effect of two types of catalysts on the activity of the catalytic hydrogenation of nitrobenzene was studied. Catalysts were prepared by the surface deposition of palladium hydroxide with a simultaneous reduction with formaldehyde in a basic environment and were characterised by X-ray powder diffraction, transmission electron microscopy, adsorption-desorption, and catalytic tests — hydrogenation of nitrobenzene in methanol. The influence of the supports’ (activated carbon and a mixture of activated carbon and multi-walled carbon nanotubes) surface area is discussed. Despite having a size comparable (4–5 nm) to crystallites of metallic palladium, the catalyst prepared on a mixture of activated carbon and nanotubes (Pd/C/CNT) was significantly less active than the catalyst prepared on pure activated carbon (Pd/C); the rate of this reaction was approximately 30 % lower than the initial reaction rate. This feature could be attributed to the lower specific surface area of the Pd/C/CNT (531 m2 g?1) in comparison with the Pd/C (692 m2 g?1).  相似文献   

18.
Through serendipitous discovery, a palladium bis(phosphine) complex was identified as a catalyst for the selective transformation of sp2C−F and sp2C−H bonds of fluoroarenes and heteroarenes to sp2C−Al bonds (19 examples, 1 mol % Pd loading). The carbon–fluorine bond functionalization reaction is highly selective for the formation of organoaluminium products in preference to hydrodefluorination products (selectivity=4.4:1 to 27:1). Evidence is presented for a tandem catalytic process in which hydrodefluorination is followed by sp2C−H alumination.  相似文献   

19.
An intermolecular C(sp3) H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3) H bond by the generated Pd NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3) H amination reaction to occur.  相似文献   

20.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号