首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Two-dimensional (2D) materials possess special physical and chemical properties. They have been proved to have potential application advantage in the microwave absorption (MA) and electromagnetic interference (EMI) shielding. Particularly, they exhibit positive shielding and absorbing response to EMI. Here, the research progress of preparation, electromagnetic performance and microwave shielding/absorbing mechanisms of 2D composite materials are introduced. Effective preparation routes including introducing heteroatoms, constructing unique structures and 2D composite materials are described. Furthermore, the application prospects and challenges for the development of novel EMI materials are expatiated.  相似文献   

2.
Carbon black-based conductive rubber composites have important impacts on electromagnetic interference(EMI) shielding applications. However, an excessive amount of carbon black in the recipes of these conductive rubbers has caused their weak elasticity. Herein, hollow carbon black(HCB) particles were used to tune the elasticity of conductive rubber composites. Unique hollow morphology produced a better compression recovery of HCB than other solid carbon black, such as acetylene black. When the coupling agent was bonded to HCB, their conductive silicone rubber composites were featured by high stretching resilience, a fast compression recovery and excellent conductivity to satisfy the electromagnetic interference shielding requirements. Importantly, the rubber composites with coupling HCB had extremely low variations of mechanical property, conductivity and EMI shielding effectiveness after thermal accelerated aging tests. It is therefore revealed that the elasticity of HCB and its interfacial chemical coupling with rubber chains both play crucial roles in adjusting the elasticity of conductive rubber to sever long-term EMI protection.  相似文献   

3.
As a critical action plan formulated for peaking carbon dioxide emissions, polymeric electromagnetic interference (EMI) shielding materials based on CO2 foaming technology have recently been attracting widespread attention in both research and industry, attributable to their efficient use of CO2, high specific strength, corrosion resistance and low-cost characteristics. In the past decade, the emergence of novel design concepts and preparation techniques for CO2 foaming technology has led to the development of new high-performance EMI shielding materials in this field. This review summarizes the research progress made to date on the fabrication of EMI shielding composite foams by supercritical carbon dioxide (scCO2) foaming. We also explore the structure-activity relationships between the component/distribution and EMI shielding properties. Additionally, the application prospects and development challenges of new EMI shielding composite foams are described.  相似文献   

4.
The recent development in telecommunication technology has led electromagnetic interference (EMI) to a serious threat to both electronic devices and living beings. In this work, we designed a highly efficient EMI shielding material by taking advantage of both carbonaceous hybrid filler and double percolation phenomenon. Here, a flexible, lightweight microwave absorbing conductive polymer composite was fabricated by employing poly (ethylene‐co‐methyl acrylate) and ethylene octene copolymer (EMA/EOC) binary blend as the matrix and multiwall carbon nanotube carbon black (MWCNT/CB) hybrid filler as the conductive moiety. We investigated the effect of MWCNT content in the hybrid composite on mechanical, thermomechanical, electrical, and shielding efficiency. A total EMI shielding efficiency of ?37.4 dB in the X band region was attained with 20 wt% hybrid filler containing 50 wt% MWCNT along with promising mechanical properties.  相似文献   

5.
The use of plastic materials as housings for electronic equipment depends on the ability to change the plastic composition from an insulator into an electrical conductor. Because there is a wide latitude in the level of conductivity that is achievable in such a composition, it is important to be able to relate the level of electromagnetic interference (EMI) shielding attained to the bulk resistivity of the conductive plastic composition. This report describes the use of a dual chamber method for measuring the EMI shielding effectiveness of polymer-based compositions. The system described is capable of measuring the shielding effectiveness of filled composites, coated samples, flat and molded structures and gaskets, and the effect of void spaces and joints. The dynamic range of this system is 80 dB, which is sufficient for most plastic compositions. Finally, a correlation between shielding effectiveness and bulk resistivity for filled compositions is presented, based on plane wave analysis. Theoretical predictions and experimental results are shown to be in excellent agreement.  相似文献   

6.
There is widespread use of telecommunication and microwave technology in modern society, and raised the electromagnetic interference (EMI) issue to alarming situation due to apprehensive demand and growth of 5G technology undesirably disturbing the human health. The two dimensional (2D) materials including graphene and MXenes are already been used for variety of electronic devices due to their exceptional electrical, mechanical, optical, chemical, and thermal properties. MXene is composed of metal carbides, in which mainly metals are the building blocks for dielectrics, semiconductors, or semimetals. However, the strong interfaces with electromagnetic waves (EM) are variable from terahertz (THz) to gigahertz (GHz) frequency levels and are widely used in EMI and Microwave absorption (MA) for mobile networks and communication technologies. The use of different organic materials with metal, organic, inorganic fillers, polymers nanocomposite and MXene as a novel material has been studied to address the recent advancement and challenges in the microwave absorption mechanism of 2D materials and their nanocomposites. In this concern, various techniques and materials has been reported for the improvement of shielding effectiveness (SE), and theoretical aspects of EMI shielding performance, as well stability of 2D materials particularly MXene, graphene and its nanocomposites. Consequently, various materials including polymers, conducting polymers, and metal–organic frameworks (MOF) have also been discussed by introducing various strategies for improved MA and control of EMI shieling. Here in this comprehensive review, we summarized the recent developments on material synthesis and fabrication of MXene based nanocomposites for EMI shielding and MA. This research work is a comprehensive review majorly focuses on the fundamentals of EMI/MA.  The recent developments and challenges of the MXene and graphene based various structures with different polymeric composites are described in a broader perspective.  相似文献   

7.
Electromagnetic interference (EMI) shielding materials of complex type of conductive polypyrrole (PPy) as an intrinsically conducting polymer and silver‐palladium (AgPd) metal compound coated on woven or non‐woven fabrics are synthesized. From dc conductivity and SEM photographs of PPy/fabric complexes, we discuss charge transport mechanism and the homogeneity of coating on the fabrics. The EMI shielding efficiency of PPy/fabric and AgPd/fabric complexes is in the range of 8 ~ 80 dB depending on the conductivity and the additional Ag vacuum evaporation. The highest EMI shielding efficiency of PPy/fabric complexes vacuum‐evaporated by Ag is ~80 dB, indicating potential materials for military uses. We propose that PPy/fabrics are excellent RF and microwave absorber because of the relatively high absorbance and low reflectance of the materials. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper summarizes and reviews the research on electromagnetic interference (EMI) shielding with intrinsically conducting polymers (ICPs), mainly polyaniline (PANI) and polypyrrole (PPY), and their composites in various frequency ranges. ICPs are new alternative candidates for EMI shielding applications due to their lightweight, corrosion resistance, ease of processing, and tunable conductivities as compared with typical metals. More importantly, the dominant shielding characteristic of absorption other than that of reflection for metals render ICPs more promising materials in applications requiring not only high EMI shielding effectiveness but also shielding by absorption, such as in stealth technology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
《中国化学快报》2020,31(4):1026-1029
The demand for flexible and freestanding electromagnetic interference(EMI) shielding materials are more and more urgent to combat with serious electromagnetic(EM) radiation pollution.Twodimensional Ti_3C_2T_x is considered as promising EMI shielding material to graphenes because of the low cost and high electrical conductivity.However,the shielding performance still needs to be optimized to decrease the reflection effectiveness(SE_R) and increase absorption effectiveness(SEA).Herein,we prepared Ti_3C_2T_x-bonded carbon black films with a porous structure.The SE_R decreased from 20 dB to12 dB and the SEA increased from 31 dB to 47 dB.The best EMI shielding effectiveness can be as high as60 dB with SE_A of 15 dB and SE_R of45 dB.Their calculated specific shielding effectiveness can be as high as8718 dB cm~2/g.These results indicate that the porous structure can enhance the absorption of the EMI shielding films,resulting from the enhanced scattering and reflectio n.Conseque ntly,this work provides a promising MXene-based EMI shielding film with lightweight and flexibility.  相似文献   

10.
Highly conducting polyaniline (PANi)-coated multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization method for electromagnetic interference shielding. The thickness of the PANi coatings was controlled by the oxyfluorination treatment on the multi-walled carbon nanotubes and analyzed with both SEM and TEM. The oxyfluorination with higher oxygen content produced more hydrophilic functional groups on the surface of multi-walled carbon nanotubes. The functional groups led to the well distribution and coating of PANi on the multi-walled carbon nanotubes resulting in the higher interfacial affinity between them. The uniform coating of PANi on MWCNTs by controlling the oxyfluorination conditions also played a crucial role in increasing the electrical conductivity of nanocomposites. The improved interfacial affinity resulted in the higher electromagnetic interference (EMI) SE of 47.03?dB based on the synergistic combination of the conductive components. The EMI shielding mechanism of PANi on MWCNTs suggested that EMI was mainly shielded by adsorption to avoid secondary EMI.  相似文献   

11.
通过共挤出包覆-热压法制备了具有隔离结构的聚丙烯(PP)/碳纳米管(CNTs)电磁屏蔽复合材料。 其中,CNTs随机分布于PP基体中形成导电相,该导电复合物作为包覆层包敷在纯PP颗粒表面,形成包覆复合粒子,经热压后形成隔离导电网络。 结果表明,所制备的隔离结构复合材料呈现良好的导电性能,可获得较低的导电逾渗值0.28%(体积分数);在CNTs质量分数为5.6%时,该复合材料电磁屏蔽性能达到25.6 dB,同时具有良好的力学性能。 本文结果表明,共挤出包覆-热压法制备隔离结构导电复合材料方法简单可控、绿色环保,对开发高性能电磁屏蔽复合材料具有重要指导意义。  相似文献   

12.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

13.
The rapid development of communication technology and electronic industry has brought unprecedented serious electromagnetic interference (EMI) and electromagnetic wave (EMW) pollution. Although EMI shields and EMW absorbers based on metal or magnetic materials were used to solve these problems, they have long been criticized for their high price, high density and easy corrosion. In order to achieve low density and efficient dissipation of electromagnetic energy, aerogels stand out among manifold materials. However, constructing aerogels with good EMI shielding or EMW absorption performance and acceptable mechanical properties is not an easy task. Burgeoning biopolymers, such as cellulose, lignin, chitin/chitosan and alginate, breathe new life into aerogels for high-efficiency EMW shielding and absorbing. Here, we reviewed the contributions of biopolymers in the fields of aerogels for EMW shielding and absorbing. At the same time, some challenges and outlook were also pointed out, aiming to promote the advance of aerogel-based EMI shields and EMW absorbers as well as the rational utilization of biopolymers.  相似文献   

14.
介绍了电磁屏蔽材料在军用和民用领域的重要性;简要阐述了电磁屏蔽的机理;综述了4种不同电磁屏蔽材料的优缺点以及研究现状,分别为金属型、表面导电型、填充复合型和本征型导电聚合物电磁屏蔽材料;分析并提出了3种提高电磁屏蔽效能的方式,分别为多孔结构设计、多层结构设计、复合填料优化。  相似文献   

15.
Processing, electrical, and electromagnetic interference (EMI) shielding behaviors of carbon nanotube (CNT)/acrylonitrile–butadiene–styrene (ABS) nanocomposites were studied as function of CNT concentration. The nanocomposites were prepared by melt mixing followed by compression molding. The selective and good level of dispersion of CNT in the styrene–acrylonitrile section of the ABS polymer was found to create conductive networks in the ABS matrix at a nanofiller loading of 0.75 wt %. At this nanofiller loading, the nanocomposite electrical conductivity was 10?5 S/m. This conductivity makes the nanocomposite suitable for electrostatic discharge protection applications. The EMI shielding effectiveness of the nanocomposites increased with the increase in nanofiller concentration. In the 100–1500 MHz frequency range, 1.1 mm thick plates made of ABS nanocomposite filled with 5 wt % CNT exhibit an EMI shielding effectiveness of 24 dB. At this shielding level, the nanocomposite is suitable for a broad range of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
This paper presents a solvent-based, mild method to prepare superhydrophobic, carbon nanofiber/PTFE-filled polymer composite coatings with high electrical conductivity and reports the first data on the effectiveness of such coatings as electromagnetic interference (EMI) shielding materials. The coatings are fabricated by spraying dispersions of carbon nanofibers and sub-micron PTFE particles in a polymer blend solution of poly(vinyledene fluoride) and poly(methyl methacrylate) on cellulosic substrates. Upon drying, coatings display static water contact angles as high as 158° (superhydrophobic) and droplet roll-off angles of 10° indicating self-cleaning ability along with high electrical conductivities (up to 309 S/m). 100 μm-thick coatings are characterized in terms of their EMI shielding effectiveness in the X-band (8.2-12.4 GHz). Results show up to 25 dB of shielding effectiveness, which changed little with frequency at a fixed composition, thus indicating the potential of these coatings for EMI shielding applications and other technologies requiring both extreme liquid repellency and high electrical conductivity.  相似文献   

17.
A flexible and multi-layered graphene nanosheets (GNSs)-Fe3O4/poly (vinylidene fluoride) hybrid composite film with high-efficient electromagnetic interference (EMI) shielding was fabricated via a facile layer-by-layer coating. The well-designed multi-layered and hybrid electromagnetic fillers endow the prepared film with good surface impedance matching and prominent internal multiple absorption, which forms “absorb-reflect-reabsorb” electromagnetic transmission pattern and results in highly efficient electromagnetic shielding effectiveness (EMI SE). The resultant composite film exhibits an exceptional EMI SE of 52.0 dB at a thickness of 0.3 mm. What is more important is that the prepared film exhibits excellent flexibility and EMI stability, and the retention rate of efficient EMI SE is high as 91.9% after 1000 bending-release cycles. This study provides a feasible strategy for designing high-efficient EMI shielding film with excellent flexibility and ultra-thin thickness that suitable for next-generation intelligent protection devices.  相似文献   

18.
The present article deals with current trends in spinel based modified polymer composite materials for applications in the field of electromagnetic shielding. The interaction between the various spinel based materials and polymers is an emerging field of studies among various researchers. The thermal stability, electrical conductivity, the bonding between the metal ferrites and the polymer plays an important role in the interaction of electromagnetic radiation. These properties also effect the mechanism of the EM waves for the shielding applications. Considering these all properties, polyaniline appears to be an suitable polymer for electromagnetic shielding applications. Polyaniline composites not only reinforced the properties of spinel materials but also enhanced the dielectric properties of the composite material. When carbon based materials such as graphene, graphene oxide and CNT was added along with spinel material in polyaniline based composite, they accelerate the electrical properties and enhances the shielding applications. In this paper the various synthesis methods, fabrication methods of polyaniline, and the properties of polyaniline based composites have been discussed. In addition, the various salient features and futuristic challenges of polyaniline based composite materials for EMI shielding applications were attempted to make a well equipped material for radar absorption.  相似文献   

19.
In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.  相似文献   

20.
Wei  Yuyi  Dai  Zhenhua  Zhang  Yanfei  Zhang  Weiwei  Gu  Jin  Hu  Chuanshuang  Lin  Xiuyi 《Cellulose (London, England)》2022,29(10):5883-5893

Increasing electromagnetic pollution calls for electromagnetic interference (EMI) shielding materials, especially sustainable, lightweight, and environmentally stable, biomass-based materials. MXene-coated wood (M/wood) is prepared by simply spraying MXene sheets on the wood surface. Varying this spray coating manipulates the shielding performance and its application to different wood species. The M/wood exhibits high electrical conductivity (sheet resistance is only 0.65 Ω/sq) with an excellent EMI shielding effectiveness of 31.1 dB at 8.2?~?12.4 GHz and is also fire retardant. Furthermore, waterborne acrylic resin (WA) is coated on M/wood to enhance environmental stability. The WA coating improves EMI shielding performance stability after water-soaking and drying testing and prevents the peeling of MXene from wood. These satisfactory properties of WA-M/wood and the facile manufacturing approach promote the feasibility of wood-based EMI shielding materials.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号