首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
戴晔  包华  林嘉平  FOULGER  S.H 《化学学报》2006,64(22):2275-2280
以含有双硫键的二丙烯酰胱胺与双丙烯酰胺作为交联剂, 与单体丙烯酰胺紫外光引发聚合, 嵌入聚苯乙烯胶体晶体, 制备了聚丙烯酰胺胶体晶体水凝胶. 将水凝胶中双硫键打断形成巯基, 利用巯基可与重金属离子偶合的作用, 水凝胶体积收缩而改变胶体晶体中胶粒之间的距离, 根据胶体晶体带隙位移, 可分析水中重金属离子的浓度. 紫外可见光反射图谱表明, 胶体晶体带隙最大可蓝移约80 nm. 带隙移动与时间的关系曲线表明, 胶体晶体水凝胶对重金属离子有较好的灵敏度. 该体系可用于分析铅、锌等重金属离子.  相似文献   

2.
Nanofiber formation of dipeptide-based bolaamphiphiles, bis (N-alpha-amide--valyl--valine) 1,n-alkane dicarboxylate (n=6, 8, 10, and 12) in water was analyzed by TEM, SEM, IR, and XRD. The bolaamphiphiles proved to be coordinated to divalent transition-metal cations, such as Co2+, Ni2+, Cu2+, and Zn2+, giving precipitates, colloidal dispersions (loose hydrogels), and hydrogels upon self-assembly at 23 or 70 degrees C. Longer oligomethylene chains and strong interaction between the metal cations and the carboxylate anions are responsible for the hydrogel formation. Energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (EF-SEM) images revealed that the colloidal dispersions and the hydrogels consist of a large number of nanofibers with widths of 15-20 nm and lengths of several micrometers. FT-IR and powder XRD measurement supported the existence of a beta-sheet structure-based nanofibers complexing with metal cations.  相似文献   

3.
We report a series of heterobimetallic Pt/Zn and Pt/Ca complexes to study the effect of proximity of a dicationic base metal on the organometallic Pt species. Varying degrees of Pt⋅⋅⋅Zn and Zn interaction with the bridging Me group are achieved, showcasing snapshots of a hypothetical process of retrotransmetalation from Pt to Zn. In contrast, only weak interactions were observed for Ca with a Pt-bound Me group. Activation of H2, B−H and Si−H bonds leads to the formation of hydride-bridged Pt−H−Zn complexes, which is not observed in the absence of Zn, pointing out the importance of metal-metal cooperation. Reactivity of PtMe2/M2+ with terminal acetylene, water and methanol is also studied, leading to facile protonation of one of the Me groups at the Pt center only when Zn is present. This study sheds light on various ways in which the presence of a 2+ metal cation significantly affects the reactivity of a common organoplatinum complex.  相似文献   

4.
The interaction between metal ions and bovine serum albumin (BSA) was studied by using a piezoelectric quartz crystal (PQC) arranged in the electrode-separated configuration. A silanized surface of the PQC was coated with a BSA membrane via a coupling reaction with glutaraldehyde. The frequency shifts obtained from PQC coated with a BSA membrane suggested that various kinds of metal ions could be adsorbed onto the BSA membrane from aqueous solutions containing a low concentration of metal ions (2 or 10 micromol dm(-3)), only when the BSA was denatured with an alkaline solution. Anionic species of Pt(IV) and Au(III) were adsorbed onto the denatured BSA membrane from an acetic acid solution at pH 2.2, and cationic species of Cd(II), Zn(II), Co(II), Ni(II), Cu(II), and Ag(I), and cations, such as Ca2+, Ba2+, and Mg2+, were adsorbed from ammonia buffer at pH 9.5, whereas Al(III), Cr(III), Fe(III), Hg(II), and Pb(II) were hardly adsorbed. The adsorption mechanisms of these metal ions are discussed, based on the electrostatic interaction between the metal ions and the denatured BSA membrane, and complex formation between the metal ions and amino acid residues of the denatured BSA. Further, the PQC coated with a denatured BSA membrane was applied to the determination of Pt and Cd, using large frequency shifts for Pt(IV) and Cd(II).  相似文献   

5.
Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.  相似文献   

6.
Study of the reactivity of 3d transition metal cations in diethylene glycol solutions revealed several key features that made it possible to develop a new method for synthesis of the nanocrystalline transition metal ferrites. The 3-7 nm particles of [MFe2O4]n[O2CR]m, where M = Mn, Fe, Co, Ni, and Zn, ligated on their surface with long-chain carboxylate anions, have been obtained in an isolated yield of 75-90%. The key features are the following. Complexation of the first-row transition metal cations with diethylene glycol at a presence of alkaline hydroxide is sufficient to enable control over the rate of their hydrolysis. The reaction of hydrolysis leads to the formation of metal oxide nanocrystals in colloidal solution. The nanoparticles growth is terminated by an added long-chain carboxylic acid, which binds to their surface and acts as a capping ligand. The isolated nanocrystalline powders are stable against agglomeration and highly soluble in nonpolar organic solvents.  相似文献   

7.
In this Density Functional Theory study, it became apparent that astaxanthin (ASTA) may form metal ion complexes with metal cations such as Ca?2, Cu?2, Pb?2, Zn?2, Cd?2 and Hg?2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.  相似文献   

8.
Reduction of H(+) by TiO(2) electrons (e(TiO)(2)(-)) in aqueous colloidal solution takes place in the presence of surface metal catalysts. The catalytic reduction gives rise to adsorbed hydrogen atoms. In the presence of Pd(0) or Pt(0), material balance shows that most of the adsorbed H atoms combine to molecular hydrogen. When the TiO(2) nanoparticles are partially coated with Au(0) instead of Pd(0) or Pt(0), a higher than expected molecular hydrogen level is observed, attributed to a short chain reaction involving hydrogen abstraction from 2-propanol. This unusual hydrogen abstraction reaction has not been reported before. The mechanism and energy balance are discussed. The surface modification of TiO(2) nanoparticles was carried out by reduction of K(2)PdCl(4), H(2)PtCl(6), or HAuCl(4) with e(TiO)(2)(-). The latter had been generated through electron injection from hydrated electrons, hydrogen atoms, or 2-propanol radicals, produced by gamma or pulse radiolysis prior to the addition of the metal compounds. Upon addition of the metal compounds, immediate reactions take place producing metals clusters (M(0)) by multistep reductions reactions on the TiO(2) surface. The chemical kinetics involving the different metals and the reaction rate constant of e(aq)(-) and e(TiO)(2)(-) with AuCl(4)(-) is also reported.  相似文献   

9.
The interaction of Pt particles with the regular CeO(2)(111) surface has been studied using Pt(8) clusters as representative examples. The atomic and electronic structure of the resulting model systems have been obtained through periodic spin-polarized density functional calculations using the PW91 exchange-correlation potential corrected with the inclusion of a Hubbard U parameter. The focus is on the effect of the metal-support interaction on the surface reducibility of ceria. Several initial geometries and orientations of Pt(8) with respect to the ceria substrate have been explored. It has been found that deposition of Pt(8) over the ceria surface results in spontaneous oxidation of the supported particle with a concomitant reduction of up to two Ce(4+) cations to Ce(3+). Oxygen vacancy formation on the CeO(2)(111) surface and oxygen spillover to the adsorbed particle have also been considered. The presence of the supported Pt(8) particles has a rather small effect (~0.2 eV) on the O vacancy formation energy. However, it is predicted that the spillover of atomic oxygen from the substrate to the metal particle greatly facilitates the formation of oxygen vacancies: the calculated energy required to transfer an oxygen atom from the CeO(2)(111) surface to the supported Pt(8) particle is only 1.00 eV, i.e. considerably smaller than 2.25 eV necessary to form an oxygen vacancy on the bare regular ceria surface. This strongly suggests that the propensity of ceria systems to store and release oxygen is directly affected by the presence of supported Pt particles.  相似文献   

10.
金属离子修饰的Ru-Pt/γ-Al2O3催化p-CNB选择性加氢   总被引:3,自引:0,他引:3  
催化还原法制备卤代苯胺因具有产品质量好、收率高和三废少等优点而日益受到重视.近年来,研究较多的是高分子化合物稳定的Pt,Pd,Ru单金属或双金属胶体催化剂以及负载型单金属或双金属催化剂.用第三金属组分修饰的胶体催化剂的催化性能更好,但反应后催化剂与产物分离  相似文献   

11.
Oxidation of benzene into CO2 in air has been studied in the temperature range of 300-673 K on supported metal oxides and on 0.7% Pt/Al2O3, in the absence and in the presence of several Volatile Organic Compounds (VOCs). On the metal oxides, the deep oxidation of benzene is strongly inhibited in presence of VOCs and O-containing VOCs lead to more toxic VOCs (i.e: acetaldehyde).  相似文献   

12.
The adsorption and ultrasonic desorption of toxic heavy metal cations (i.e., Cd(II) and Zn(II)) on natural bentonite have been modeled with the aid of a factorial design approach. The ability of untreated bentonite to remove Cd(II) and Zn(II) from aqueous and acidic solutions at different pH values has been studied for different metal concentrations by varying the amount of adsorbent, temperature, stirring speed, and contact time. The same factors, except stirring speed and metal concentration, were applied in desorption study. Ultrasound power was used for desorption instead of stirring speed. A flame atomic absorption spectrometer was used to measure the cadmium and zinc concentration before and after both experimental study. The highest adsorption for Zn and Cd was 99.85 and 96.84%, respectively, and the highest desorption for Zn and Cd obtained was 66.57 and 51.37%, respectively. It is believed that the models obtained for adsorption and desorption may provide a background for detailed mechanism searches and pilot and industrial scale applications.  相似文献   

13.
Separations of metal cations on a column packed with the strongly acidic cation exchanger Separon SGX CX were investigated in the presence of alpha-hydroxyisobutyric acid (HIBA) in the mobile phase. A retention model based on the general theory of side equilibria was elaborated and relations describing dependences of capacity factors of analytes on the compositon of the mobile phase were derived. Effects of HIBA concentration and pH of the mobile phase on the analyte retention were studied in detail. Stability constants of divalent metal cations (Cd(2+), Co(2+), Mn(2+), Ni(2+) and Zn(2+)) with HIBA were calculated from the experimental dependences of the reciprocal values of capacity factors on the ligand concentration.  相似文献   

14.
双安息香缩乙二胺的合成及其配位性质   总被引:5,自引:0,他引:5  
合成了双安息香缩乙二胺及其与 Ni( )、Pd( )、Pt( )、Zn( )、Cd( )和 Hg( )的配合物 ,并经质谱、红外光谱、元素分析和电子光谱等方法所表征 ;测定了溶液中配合物的稳定常数 ,并就该配体的特殊配位性质进行了讨论。  相似文献   

15.
The synthesis and electrochemical, optical, and cation-sensing properties of the ferrocene-triazole-pyridine triads 3 and 5 are presented. Azidoferrocene 1 and 1,1'-diazidoferrocene 4 underwent the "click" reaction with 2-ethynylpyridine to give the triads 3 and 5 in 81% and 68% yield, respectively. Electrochemical studies carried out in CH(3)CN in the presence of increasing amounts of Zn(2+), Ni(2+), Cd(2+), Hg(2+), and Pb(2+) metal cations, showed that the wave corresponding to the ferrocene/ferrocenium redox couple is anodically shifted by 70-130 mV for triad 3 and 167-214 mV for triad 5. The maximum shift of the ferrocene oxidation wave was found for 5 in the presence of Zn(2+). In addition, the low-energy band of the absorption spectra of 3 and 5 are red-shifted (Δλ = 5-10 nm) upon complexation with these metal cations. The crystal structures of compounds 3 and 5 and the complex [3(2)·Zn](2+) have been determined by single-crystal X-ray methods. (1)H NMR studies as well as density functional theory calculations have been carried out to get information about the binding sites that are involved in the complexation process.  相似文献   

16.
This paper describes a cation exchange approach to the synthesis of metal chalcogenide core-shell particles with the same size but a number of different compositions. This method begins with the preparation of colloidal spheres of amorphous Se (a-Se), followed by their reaction with Ag atoms to form Se@Ag2Se spheres. These core-shell spheres are then converted into Se@MSe (M = Zn, Cd, and Pb) via cation exchange with Zn2+, Cd2+, and Pb2+. All the colloidal spheres prepared using this method are monodispersed in size and characterized by a spherical shape and a smooth surface. Starting from the same batch of Se@Ag2Se, the resultant Se@MSe samples were essentially the same in size. Furthermore, these core-shell colloidal spheres can be easily made superparamagnetic by incorporating Fe3O4 nanoparticles into the a-Se cores. This synthetic approach provides a simple and versatile route to magnetoactive core-shell spheres with the same size but a range of different compositions. This study also implies that it is feasible to further increase the diversity of cations that can be used in the cation exchange of a colloidal system to produce multifunctional core-shell spheres with a variety of properties.  相似文献   

17.
The synthesis of (Dien)Pt(PMEA-N1), where Dien = diethylenetriamine and PMEA2- = dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is described. The acidity constants of the threefold protonated H3[(Dien)Pt(PMEA-N1)]3+ complex were determined and in part estimated (UV spectrophotometry and potentiometric pH titration): The release of the proton from the (N7)H+ site in H4[(Dien)Pt(PMEA-N1)]3+ occurs with a rather low pKa (= 0.52+/-0.10). The release of the proton from the -P(O)2(OH) group (pKa = 6.69+/-0.03) in H[(Dien)Pt(PMEA-N1)]+ is only slightly affected by the N1-coordinated (Dien)Pt2+ unit. Comparison with the acidic properties of the H[(Dien)Pt(PMEA-N7)]+ species provides evidence that in the (Dien)Pt(PMEA-N7) complex in aqueous solution an intramolecular, outer-sphere macrochelate is formed through hydrogen bonds between the -PO3(2-) residue of PMEA2- and a PtII-coordinated (Dien)NH2 group; its formation degree amounts to about 40%. The stability constants of the M[(Dien)Pt(PMEA-N1)]2+ complexes with M2+ = Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were measured by potentiometric pH titrations in aqueous solution at 25 degrees C and I = 0.1 M (NaNO3). Application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3)H for simple phosph(on)ate ligands. R-PO3(2-), where R represents a non-inhibiting residue without an affinity for metal ions, proves that the primary binding site of (Dien)Pt(PMEA-N1) is the phosphonate group with all metal ions studied; in fact, Mg2+, Ca2+ and Ni2+ coordinate (within the error limits) only to this site. For the Cu[(Dien)Pt(PMEA-N1)]2+ and Zn[(Dien)Pt(PMEA-N1)]2- systems also the formation of five-membered chelates involving the ether oxygen of the -CH2-O-CH2-PO3(2-) residue could be detected; the formation degrees are about 60% and 30%, respectively. The metal-ion-binding properties of the isomeric (Dien)Pt(PMEA-N7) species studied previously differ in so far that the resulting M[(Dien)Pt(PMEA-N7)]2+ complexes are somewhat less stable, but again Cu2+ and Zn2+ also form with this ligand comparable amounts of the mentioned five-membered chelates. In contrast, both M[(Dien)Pt(PMEA-N1/N7)]2+ complexes differ from the parent M(PMEA) complexes considerably; in the latter instance the formation of the five-membered chelates is of significance for all divalent metal ions studied. The observation that divalent metal-ion binding to the phosphonate group of (Dien)Pt(PMEA-N1) and (Dien)Pt(PMEA-N7) is only moderately inhibited (about 0.2-0.4 log units) by the twofold positively charged (Dien)Pt2+ unit at the adenine residue allows the general conclusion, considering that PMEA is a nucleotide analogue, that this is also true for nucleotides and that consequently participation of, for example, two metal ions in an enzymatic process involving nucleotides is not seriously hampered by charge repulsion.  相似文献   

18.
Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion? ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.  相似文献   

19.
通过不同金属离子对环氧型丙烯酸橡胶凝胶含量的影响,得出几种金属离子催化开环的顺序,探讨了高价金属离子对环氧基的催化开环机理;依据交联点单体对共聚物凝胶含量的影响数据,通过近似计算得到共聚物的凝胶含量超过1%时的环氧基开环数的临界值.  相似文献   

20.
We studied the effect of divalent alkaline earth metal cations Ca2?, Mg2? and transition metals Co2?, Ni2?, Cu2? and Zn2? on DNA condensation and its protection against thermal denaturation in presence of dioleoylphosphatidylcholine liposomes (DOPC). Experimental results have shown that Ca2? and Mg2? as well as Zn2? mediate DNA condensation. Cu2? causes DNA double helix destabilization, and does not mediate binding between DNA and DOPC liposomes. Co2? and Ni2? can interact with DNA on both ways mentioned above. Static light scattering was use to follow the size of aggregates in DNA condensation process. Phospholipid bilayer and divalent cations protect condensed DNA against thermal destabilization. The highest stabilization effect was found in aggregates with Ca2? and Zn2?, whereas in presence of either Co2? or Ni2? some volume fraction of DNA is denatured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号