首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   

2.
Poly(styrene sulfonic acid) membranes (Neosepta CMX, Tokuyama Corp.) have been modified by in situ polymerization of aniline. (NH4)2S2O8, FeCl3, H2O2, and KIO3 were used as oxidizing agents, and two different modification methods (single-step versus two-step) were studied. The composite membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, elemental analysis, electrodialysis, ion-exchange capacity, and conductivity measurements. Our results demonstrate that it is possible to control the polymerization site of aniline which in turn affects the membrane selectivity properties. Hence, composite membranes having a very thin and homogeneous surface polyaniline layer lead to a very low transport of Zn 2+ without increasing significantly the resistance to H+ conductivity. On the other hand, membranes containing about the same quantity of PANI but inside the membrane do not block the transport of Zn 2+.  相似文献   

3.
In this study different membranes were produced, aiming to evaluate their use in electrodialysis. These membranes were produced using conventional polymer (high-impact polystyrene) and polyaniline. The membrane characterization was done by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetry (TGA). The studies of the zinc and proton extraction ionic transport through the membranes were evaluated using a three-compartment cell. The results obtained using the produced membranes were compared to the results obtained with the commercial membrane Nafion 450. It was found that a synthesized membrane can be used to recover zinc in acid media. In addition, a preliminary computational essay about the structures of PAni and CSA is presented.  相似文献   

4.
In this study, different membranes were prepared using conventional polymer (high impact polystyrene) and polyaniline to evaluate their use in electrodialysis. Two different preparation modes were tested: chemical mixture with subsequent solvent evaporation; and mechanical mixture with subsequent pressing under heating. The purpose was to understand the effect of production methods on membrane microstructure and ionic transport. Membranes were characterized by swelling study, Fourier transformed infrared spectroscopic, scanning electron microscopy, thermogravimetric analysis and dynamic mechanical analysis. Ionic transport through the membranes was evaluated using a three-compartment cell. The results of the produced membranes were compared with those of the commercial Nafion 450 membrane.  相似文献   

5.
Composite membranes were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face of a sulfonated cation-exchange membrane (CEM) and quaternary aminated anion-exchange membrane (AEM). IR and SEM studies for both types of membranes confirmed PANI loading on the ion-exchange membranes. PANI composite ion-exchange membranes were characterized as a function of the polymerization time by ion-exchange capacity, coating density, and membrane conductance measurements. Membrane potential measurements were performed in various electrolyte solutions in order to observe the selectivity of these membranes for different types of counterions. Membrane potential data in conjunction with membrane conductance data was interpreted on the basis of frictional considerations between membrane matrix and solute. Electrodialysis experiments, using PANI composite ion-exchange membranes with 4 h polymerization time, were performed in single and mixed electrolyte solutions for observing electromigration of solute across PANI composite ion-exchange membranes. Relative dialytic rates of Na(2)SO(4), CaCl(2), and CuCl(2) were estimated with reference to NaCl on the basis of electrodialysis experiments and it was concluded that it is possible to separate different electrolytes using PANI composite ion-exchange membranes.  相似文献   

6.
以磺化聚醚砜(SPES)为基体,以不同比例的SiO2溶胶与磷钨酸(PWA)为掺杂物,制备了一种有望用于直接甲醇燃料电池(DMFC)的新型SPES/PWA/SiO2有机-无机复合膜,并经热失重分析(TGA)、差示扫描量热仪(DSC)、扫描电镜(SEM)-X射线能谱分析(EDX)等对膜的结构和性能进行了表征,探讨了复合膜用作质子交换膜的可能性.结果表明:复合膜较纯SPES膜具有更高的热稳定性、玻璃化转变温度和吸水率;虽然在室温和电池操作温度(80℃)下,复合膜的拉伸强度均低于纯SPES膜,但即使当SiO2含量高达20%(w)时,复合膜的拉伸强度仍高于Nafion112膜的;SEM图片显示SiO2和PWA在膜中分布均匀,这将有利于连续质子传输通道的形成.对于SiO2含量为15%(w),PWA含量为6%(w)的复合膜,其室温质子传导率达到了0.034S·cm-1,与Nafion112膜的相当,但其甲醇渗透率明显降低,仅为商用Nafion112膜的七分之一左右,这表明该复合膜在直接甲醇燃料电池中具有良好的应用前景.  相似文献   

7.
Nafion?–polyaniline (PAn) composite films deposited by a two-step process on a stainless steel (SS) substrate were characterized in this study using Fourier transform infrared (FTIR) spectroscopy under various conditions employed to evaluate their anticorrosion properties. The SS|Nafion? electrode was first prepared by placing a certain amount of Nafion? on the SS substrate, and then polymerization of aniline was carried out potentiodynamically on the SS|Nafion? electrode. The SS|Nafion?–PAn electrodes subjected to both potentiodynamic polarization and open-circuit conditions in sulfuric acid solutions without and with chlorides appeared to have distinct differences in their FTIR spectra. It is proposed that under the electrochemical conditions used in this study, the PAn is mostly formed inside the Nafion? membrane with a high proportion of oligomers influencing the ionic transport through the membrane. The inhibition of pitting corrosion arises primarily from the enhanced permselectivity of the composite film due to the Nafion? membrane that prevents chloride transport. An essential beneficial effect comes also from the PAn redox properties on the growth of the passive oxide film. Even under severe corrosion conditions, Nafion???/em>PAn films retain their redox activity and chemical stability, whereas the membrane crystallinity seems to be enhanced.  相似文献   

8.
Conducting composite membranes of bacterial cellulose (BC) and polyaniline doped with dodecylbenzene sulfonic acid (PAni.DBSA) were successfully prepared by the in situ chemical polymerization of aniline in the presence of hydrated BC sheets. The polymerization was performed with ammonium peroxydisulfate as the oxidant agent and different amounts of DBSA. The composites were characterized by X-ray diffraction, attenuation reflectance Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), impedance spectroscopy and small angle X ray scattering (SAXS). The highest electrical conductivity value was achieved by using a DBSA/aniline molar ratio of 1.5 because this condition provided a better penetration of PAni.DBSA chains inside the hydrated BC sheet, as observed by SEM. The in situ polymerization gives rise to conducting membranes with the surface constituted by different degree roughness as indicated by Nyquist plots obtained from impedance spectroscopy and confirmed by SAXS measurements. This preliminary work provides a new way to prepare cellulose-polyaniline conducting membranes which find potential applications as electronic devices, sensors, intelligent clothes, etc.  相似文献   

9.
以苯乙烯(St)、丙烯酸丁酯(BA)和丙烯腈(AN)为单体, 采用乳液聚合的方法制备出单分散苯乙烯-丙烯酸丁酯-丙烯腈三元共聚物[P(St-BA-AN)]种子微球, 再在该种子微球表面包覆聚苯胺(PANI), 制得P(St-BA-AN)/PANI核壳结构复合微球. 采用扫描电镜(SEM)、透射电镜(TEM)、傅里叶变换红外透射光谱(FTIR)和漫反射光谱等测试手段对所制备的种子微球和复合微球的形态、结构和形成机理进行了研究, 并用四探针法测定了核壳结构复合物的导电性. 研究结果表明, 通过改变种子乳液共聚物的组成和加入苯胺的量及氧化剂的量等条件可调控复合微球的电导率. 与P(St-BA)/PANI核壳结构复合微球相比, 在核组成中引入了氰基的P(St-BA-AN)/PANI核壳结构复合微球的电导率明显提高, 当加入苯胺的量为P(St-BA-AN)种子微球与苯胺单体总质量分数的40%时, 其电导率可达到0.71 S/cm. 红外光谱结果证实了P(St-BA-AN)种子微球中的氰基和壳层中聚苯胺的胺基之间存在某种相互作用, 导致核壳结构复合物电导率的提高.  相似文献   

10.
We have prepared nanocomposite proton exchange membranes (PEMs) based on Nafion with sulfonic acid functionalized zeolite beta (AFB) as an additive. 2.5 and 5 wt% AFB composite membranes possess proton conductivity/methanol permeability (selectivity) ratios as much as 93% higher than commercial Nafion 117 at 21 °C, and 63% higher at 80 °C. These 2.5 and 5 wt% AFB composite membranes also outperform commercial Nafion 117 in direct methanol fuel cell performance evaluations. The composite membranes are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, four-electrode impedance for proton conductivity, two-compartment permeation for methanol crossover, and direct methanol fuel cell performance.  相似文献   

11.
Fine particle superacidic sulfated zirconia (SO42−/ZrO2, S-ZrO2) was synthesized by ameliorated method, and composite membranes with different S-ZrO2 contents were prepared by a recasting procedure from a suspension of S-ZrO2 powder and Nafion solution. The physico-chemical properties of the membranes were studied by ion exchange capacity (IEC) and liquid water uptake measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, thermogravimetry–mass spectrometry (TG–MS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the IEC of composite membrane increased with the content of S-ZrO2, S-ZrO2 was compatible with the Nafion matrix, the incorporation of the S-ZrO2 could increase the crystallinity and also improve the initial degradation temperature of the composite membrane. The performance of single cell was the best when the S-ZrO2 content was 15 wt.%, and achieved 1.35 W/cm2 at 80 °C and 0.99 W/cm2 at 120 °C based on H2/O2 and at a pressure of 2 atm, the performance of the single cell with optimized S-ZrO2 was far more than that of the Nafion at the same condition (e.g. 1.28 W/cm2 at 80 °C, 0.75 W/cm2 at 120 °C). The 15 wt.% S-ZrO2/Nafion composite membrane showed lower fuel cell internal resistance than Nafion membranes at high temperature and low relative humidity (RH).  相似文献   

12.
Ben Jadi  S.  El Guerraf  A.  Kiss  A.  El Azrak  A.  Bazzaoui  E.A.  Wang  R.  Martins  J. I.  Bazzaoui  M. 《Journal of Solid State Electrochemistry》2020,24(7):1551-1565
Journal of Solid State Electrochemistry - Nafion 112/polyaniline (Na/PANi) composite membranes were synthesized by chemical polymerization of aniline on the perfluorinated structure for use in...  相似文献   

13.
Composite of conductive polyaniline-isobutylated urea formaldehyde have been prepared by chemical oxidative emulsion polymerization of aniline in the presence of isobutylated urea formaldehyde resin (BUFR) in toluene-water solvents at room temperature. The mass loading of polyaniline was controlled by varying the BUFR/aniline charging ratio as well as oxidant (ammonium persulfate)/aniline molar ratio. Some factors capable of affecting the yield and conductivity of composite, such as amount of the oxidant, type of the dispersants (span-80 and span-20), and amount of resin and organic acid (para-toluene sulfonic acid) were investigated. The prepared composites were characterized by FTIR spectroscopy and scanning electron microscopy (SEM).  相似文献   

14.
A novel method is reported for controlling the structure of poly(vinylidene fluoride) (PVdF) composite proton conducting membranes. When proton conducting Nafion or zirconium phosphate sulfophenylenphosphonate (ZrPSPP) particles are dispersed in a mixed colloidal suspension with PVdF particles, the proton conducting particles selectively respond to an applied electric field. Under appropriate conditions, the proton conducting particles are induced to assemble into chains that rapidly grow to span the gap between electrodes as the electric field is applied. By removing the solvent and melting the PVdF phase while applying the electric field, composite membranes were formed that have field-induced structure. In comparison to randomly structured composites, the electric field-processed Nafion/PVdF or ZrPSPP/PVdF composite membranes showed improved proton conductivity, water sorption, selectivity for protons over methanol, and controlled surface area changes upon swelling with water. The transport and mechanical properties of the electric field-processed composite membranes suggest the potential for improved performance in direct methanol fuel cells.  相似文献   

15.
Polyaniline/magnetite nanocomposites consisting of polyaniline (PANI) nanorods surrounded by magnetite nanoparticles were prepared via an in situ self-assembly process in the presence of PANI nanorods. The synthesis is based on the well-known chemical oxidative polymerization of aniline in an acidic environment, with ammonium persulfate (APS) as the oxidant. An organic acid (dodecylbenzenesulfonic acid, DBSA) was used to replace the conventional strong acidic (1 M HCl) environment. Here, dodecylbenzenesulfonic acid is used not only as dopant, but also as surfactant in our reaction system. So, DBSA can excellently control the morphology and size of PANI nanorods and magnetite particles. Magnetite particles were formed simultaneously during sedimentation, and the formed nanorods were also decorated by the particles. The resulting PANI/magnetite composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It is found that PANI/magnetite nanorod composites have uniform size, superparamagnetism and a small mass fraction of magnetite, thermal stabilization even at a higher temperature.  相似文献   

16.
Polyaniline/montmorillonite (PAn/MMT) composite material has been prepared through chemical‐oxidative polymerization by using NH4S2O8 as the oxidant, and it was found that both the composites have inorganic and organic material characteristics and many outstanding performance through the copolymerization coupling of MMT and polyaniline. Infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the composition and structures of composite materials, as well as test the conductivity of composite materials through a four‐probe technique. The preparation conditions of PAn/MMT conducting composites are optimized. The optimal conditions have been identified for the reaction time, amount of oxidizer, concentration of HCl, and the amount of MMT. Besides, the results show that when the reaction lasts for 8 hr in the ice bath, the amount of MMT is 0.4 g/5 ml An, the mole ratio of oxidant to aniline is 1, and the concentration of hydrochloric acid is 2 M, the composite had the largest conductivity up to 11.5 S/cm. In addition, we also did an elemental analysis of the composite mechanism of PAn/MMT composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Membranes Nafion 117 are modified with poly(3,4-ethylenedioxythiophene) (PEDT) by chemical polymerization of EDT with H2O2 or FeCl3 as the oxidants in a two-compartment cell. Depending on the oxidant and polymerization conditions, PEDT is deposited either as a thin film on the membrane surface or inside the Nafion membrane depending on whether FeCl3 or H2O2 is used as the oxidant. The decrease in the ionic conductivity and methanol permeability is studied as a function of the polymerization time. A linear dependence is found with H2O2 and a t −1/2 dependence, with FeCl3. The contributions of PEDT and Nafion to the overall conductivity of the composite membranes are separated by impedance measurements. The modified membranes (FeCl3) are also tested in direct methanol fuel cells (DMFC). The methanol permeation through the membranes is measured by operating the fuel cell in an electrolysis mode. The influence of the modified membranes on the DMFC current-voltage characteristics is studied with 2 M CH3OH and O2 at 1.2 barabs and 80°C. Membrane electrode assemblies (MEAs) are prepared by hot pressing the modified membrane between two commercial gas diffusion electrodes with 1 mg cm−2 of Pt loading. A decrease of the methanol permeation of 25% is observed at MEA with the modified membrane (1 h polymerization time), compared with that of MEA with a Nafion membrane. However, the overall DMFC performance decreases in the same relation: a maximal power density of 36 W cm−2 is measured at MEA with a PEDT-modified membrane compared with 45 W cm−2 for MEA with a Nafion membrane. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 11, pp. 1330–1339. Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow. The text was submitted by the authors in English.  相似文献   

18.
Spiny polyaniline (PANI) spheres (urchin-like) were coated on a poly(tetrafluoroethylene) (PTFE) membrane via a counter-diffuse interfacial oxidation polymerization of aniline in an aqueous medium. The produced composite membrane has both unexpected superhydrophilicity and conductivity. The microstructure and morphology of the composite membrane were characterized by FTIR, UV-vis, XRD, TGA, and SEM. Effects of reagent concentrations and polymerization time on the membrane morphology and properties were studied systematically. A possible formation mechanism of the urchin-like polyaniline nanospheres on PTFE surface has been briefly discussed. The co-effect of both spherical micelles formed by Nafion and nanofibrous micelles formed by aniline/p-toluenesulfonic acid was considered to be a reason to produce the urchin-like PANI nanospheres. The PTFE/Nafion/PANI composite membrane showed a convertible hydrophilic/hydrophobic feature via adjusting acidity/alkalinity of an aqueous medium and also was able to adsorb heavy metal-ions from the medium.  相似文献   

19.
采用sol-gel法成功制备了一系列有望用于高温质子交换膜燃料电池的新型磺化聚醚砜(SPES)/磷酸硼(BPO4)复合膜, 并经热重分析(TGA)-傅立叶变换红外光谱(FTIR)联用技术、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等对膜的结构和性能进行了表征. 结果表明, 复合膜较纯SPES膜具有更高的热稳定性和玻璃化转变温度, 较低的溶胀性及较高的氧化稳定性; SEM图片显示BPO4在聚合物基体中的分布十分均匀, 这将有利于连续质子传输通道的形成; 复合膜的质子传导率随BPO4含量的增加而增加, 当温度超过120 ℃后, 复合膜仍保持着较高的质子传导率, 这表明该复合膜在高温质子交换膜燃料电池中具有良好的应用前景.  相似文献   

20.
The process of polyaniline (PANI), poly(2-methoxyaniline) (POMA) nanotubes formation was investigated. Polyaniline and poly(2-methoxyaniline) nanotubes were prepared by chemical in situ deposition within the pores of polycarbonate membranes. It was found that the formation of polyaniline and poly(2-methoxyaniline) proceeds by two substantially different mechanisms. In the case of PANI, the polymer is first formed in the polymerization solution (the solution containing the monomer and oxidant, where the polycarbonate substrate is placed), and then it precipitates on/into the membrane. In the case of POMA, the oxidized 2-methoxyaniline molecules are first adsorbed on polycarbonate surface, and then, as a consequence of their accumulation, they recombine to form the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号