首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A plane problem of forced oscillations of an ideal compressible liquid bounded from above by an elastic layer with a rough lower surface and an inverse geometric problem of determining the shape of the rough lower surface of an elastic layer from the wave characteristics on the upper surface are considered. Three methods are used to solve the direct problem: the small parameter method, the boundary element method, and the Born approximation. Solving the inverse problem is reduced to solving the integral Fredholm equation of the first kind. Results of a numerical experiment are presented.  相似文献   

2.
In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are exponential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular integral equations, which are solved numerically. The stress intensity factors are computed for various crack orientations, crack locations and material parameters. The results show that crack length, crack orientation and the non-homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.  相似文献   

3.
In this paper, a symmetric boundary value problem of the stress analysis for an equilibrium of layer with end-supports covered by diaphragms and weakened by several loaded stress raisers is investigated. The given boundary value problem is reduced to an infinite system of singular integral equations of the second kind. The expressions for stress components in an elastic layer weakened by stress raisers are presented. Based on the developed analytical procedure, extensive numerical investigations have been conducted. The results of these investigations are illustrated graphically exposing some novel qualitative and quantitative knowledge about stress concentration in the layer depending on some geometric parameters of stress raisers and Poisson’s ratio of a layer material.  相似文献   

4.
A solution is given for the problem of flow past a cascade on an axisymmetric stream surface in a layer of variable thickness, which is a component part of the approximate solution of the three-dimensional problem for a three-dimensional cascade. Generalized analytic functions are used to obtain the integral equation for the potential function, which is solved via iteration method by reduction to a system of linear algebraic equations. An algorithm and a program for the Minsk-2 computer are formulated. The precision of the algorithm is evaluated and results are presented of the calculation of an example cascade.In the formulation of [1, 3] the problem of flow past a three-dimensional turbomachine cascade is reduced approximately to the joint solution of two-dimensional problems of the averaged axisymmetric flow and the flow on an axisymmetric stream surface in an elementary layer of variable thickness.In the following we solve the second problem for an arbitrary cascade with finite thickness rotating with constant angular velocity in ideal fluid flow: the solution is carried out on a Minsk-2 computer.Many studies have been devoted to this problem. A method for solving the direct problem for a cascade of flat plates in a hyperbolic layer was presented in [2]. Methods were developed in [1, 3] for constructing the flow for the case of a channel with variable thickness; these methods are approximately applicable for dense cascades but yield considerable error for small-load turbomachine cascades. The solution developed in [4], somewhat reminiscent of that of [2], is applicable for thin, slightly curved profiles in a layer with monotonically varying thickness. A solution has been given for a circular cascade for layers varying logarithmically [5] and linearly [6]. Approximate methods for slightly curved profiles in a monotonically varying layer with account for layer variability only in the discharge component were examined in [7–9]. A solution is given in [10] for an arbitrary layer by means of the relaxation method, which yields a roughly approximate flow pattern. The general solution of the problem by means of potential theory and the method of singularities presented in [11] is in error because of neglect of the crossflow through the skeletal line. The computer solution of [12] contains an unassessed error for the calculations in an arbitrary layer. The finite difference method is used in [13] to solve the differential equation of flow, which is illustrated by numerical examples for monotonie layers of axial turbomachines. The numerical solution of [13] is very complex.The solution presented below is found in the general formulation with respect to the geometric parameters of the cascade and the axisymmetric surface and also in terms of the layer thickness variation law.The numerical solution requires about 15 minutes of machine time on the Minsk-2 computer.  相似文献   

5.
The problem of stability in a compressible boundary layer, as opposed to an incompressible layer, involves many parameters and requires consideration of three-dimensional perturbations. The transverse component of the velocity, the thermal regime at the wall, etc., take on great significance. Investigation of all aspects of this problem requires systematic calculations performed by electronic computers. There do exist a few calculations of stability of a compressible boundary layer with respect to three-dimensional disturbances for particular cases. It follows from those studies (see, for example, [1]) that consideration of three-dimensional perturbations and of the transverse component of the basic flow velocity is important. Many aspects of this problem remain uninvestigated. Aside from the sheer cumbersomeness of the problem, there exist purely mathematical difficulties connected with the presence of a small parameter with higher derivatives in the differential equations for the perturbations, which causes losses in accuracy of calculation. In this present study an algorithm will be developed for solution of the problem of stability of a compressible boundary layer relative to three-dimensional disturbances with consideration of the transverse component of the basic velocity. Calculations are performed for a boundary layer on a plane thermally insulating plate, and the effects of the transverse velocity component and the three-dimensionality of the perturbations on stability at various Mach numbers are demonstrated.  相似文献   

6.
The article discusses the problem of the motion of an incompressible liquid in a boundary layer on a blade rotating uniformly around an axis perpendicular to the swing of the blade. A parametric method is used to solve the problem, and three series of parameters are introduced, on which depend the characteristics of the boundary layer. A corresponding system of universal equations is set up, which is integrated over a broad range of change in the parameters. The results obtained permit investigating the principal laws governing flow in a boundary layer on a rotating blade. The effect of rotation on breakaway and other characteristics of the boundary layer is clarified.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 84–93, March–April, 1971.  相似文献   

7.
A fracture mechanics analysis is conducted for a delamination problem of a multilayered thermoelectric material (TEM) that consists of an n-type layer and a p-type layer sandwiched by an insulating layer. A time-varying energy release rate is presented when the n-type layer delaminates from the insulating layer. Effects of the temperature difference across the system and the applied electric current on the energy release rate are identified. The influence of the thickness ratio of the insulating layer to the thermoelectric (TE) layer is also examined. Based on the energy release rate criterion, the critical temperature difference for delamination propagation is obtained. Some useful conclusions are given.  相似文献   

8.
Summary The problem of a rigid punch pressed against and moved on the surface of an elastic or viscoelastic layer is studied. It is shown that the governing equations reduce to the same integral equation for the elastic contact problem. Two particular motions of the punch are considered. In the first case the punch moves at a constant speed along a straight line on the surface of a viscoelastic layer. In the second case the punch moves at a constant speed along a circular path. Finally, the special case of a punch moving on a layer of a standard linear viscoelastic solid is studied. The equation is identical to a punch of modified shape pressed on an elastic layer.The work presented here was supported by the National Science Foundation under Grant GK 35163 with the University of Illinois.With 1 figure  相似文献   

9.
研究具有界面相电磁弹性纤维增强复合材料的反平面剪切问题,利用复变函数方法,获得了无穷域中带界面相纤维问题在远场力、电、磁多场作用下的闭合解,得到了复合材料内部各区域电磁弹性物理量的精确表达式.利用所得结果,考虑纤维和基体间的界面相效应,研究了界面相厚度及弹性模量对复合材料内部应力场、电场强度和磁场强度的影响,数值结果给出了复合材料电磁弹性物理量随界面相参数变化的规律,为该类复合材料的设计与计算提供了有价值的参考.  相似文献   

10.
Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.  相似文献   

11.
Two problems on plane decaying surface waves in an inhomogeneous medium are under consideration: the problem where the waves similar to Rayleigh waves propagate in an isotropic elastic half-space that borders with a layer of an ideal incompressible fluid and the problem where the waves similar to Love waves propagate in a semi-infinite saturated porous medium that borders with a layer of an isotropic elastic medium.  相似文献   

12.
A continuous contact problem of functionally graded layer resting on an elastic semi-infinite plane, which is loaded with through two different blocks is addressed in this study. The elasticity theory and integral transformation techniques are used in solution of the problem. The problem is reduced to a system of singular integral equations, and solved numerically by the aid of appropriate Gauss–Chebyshev integration formula. It is assumed that the elastic semi-infinite homogeneous plane is isotropic and all surfaces are frictionless and continuous. The shear modulus and the mass density of the FG layer vary exponentially along the thickness direction.  相似文献   

13.
The flow induced by a finite disc rotating near horizontal ground is considered, including the effects of an underbody. This paper concentrates on determining the shape of the free layer beyond the rim of the disc which is horizontal in the absence of the underbody and ground but forced to deform to ensure that conditions across the layer are satisfied when the underbody or ground is added. The far-field behaviour, the inviscid flow produced by a nominally infinite disc near the ground and the global solution for small ground clearances are considered analytically, and the full problem is posed as an integral problem. This is then solved numerically and analytically. Results are presented for various heights of the disc above the ground and for discs with an axisymmetric underbody present. A universal form is found for the farfield shape (which is controlled by entrainment into the free layer) but both the underbody and the ground effects are found to increase very significantly for reduced clearances.  相似文献   

14.
In this paper, we consider the axisymmetric problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and is subjected over a part of its top surface to normal tractions while the rest of it is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using Hankel transform, the axisymmetric elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact radius. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using orthogonal Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

15.
In this paper, we consider the plane problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and over a certain segment of its top surface is subjected to normal tractions while the rest of this surface is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using integral transforms, the plane elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact half-length. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact half-length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

16.
The problem of decomposition of methane hydrate coexisting with water in a highpermeability reservoir is considered. The asymptotic solution is obtained for the decomposition regime in the negative temperature domain. Energy estimates presented show that an impermeable layer saturated with a hydrate-icemixture can be formed in reservoirs with initial positive temperature. The mathematical model of the process of hydrate decomposition is formulated under the assumption on the presence of such a layer in a high-permeability reservoir. In this case the problem is reduced to a purely thermal problem with two unknown moving boundaries. The water-ice phase transition takes place on the leading boundary, while hydrate dissociates at negative temperatures on the slower boundary. The conditions of existence of the layer saturated with a hydrate-ice mixture which is implemented in reservoirs with the high hydrate content are investigated.  相似文献   

17.
The frictional contact problem for a layer resting on a homogeneous half plane is handled using linear elasticity theory in this study. The layer is in contact with a rigid cylindrical stamp that is on the layer and applies a concentrated force in the normal and tangential directions. Friction between the component couples of layer–stamp and layer–half plane is taken into account. The problem is reduced to a system of singular integral equations, in which the contact pressures and the contact areas are the unknowns, and it is treated using Fourier transforms and the boundary conditions for the problem. The system of singular integral equations is solved numerically using the Gauss–Jacobi integration formula with equilibrium and consistency conditions. Numerical results for the contact pressures and the contact areas are given as a solution for both the frictional and the frictionless cases. This work is the first study that investigates the effect of friction on the receding contact problem of a layer and a half plane with two contact areas.  相似文献   

18.
Two problems are considered on frictionless indentation of a stamp into the upper face of a layer with a homogeneous field of initial stresses present in the layer. The model of an isotropic incompressible nonlinearly-elastic material determined by the Mooney potential is used. The following two cases are studied: the lower face of the prestressed layer is rigidly fixed, and the lower face of a prestressed layer is supported by a rigid foundation without friction. It is assumed that the additional stresses due to the action of the stamp on the layer are small as compared with the initial stresses. This assumption makes it possible to linearize the problems of determining the additional stresses. In what follows, the problems are reduced to solving two-dimensional integral equations (IE) of the first kind with symmetric irregular kernels with respect to the pressure in the contact region. As an example, the case of an elliptic (in plan) stamp acting on a layer is considered. The spatial contact problem for a prestressed elastic half-space was first considered in [1].  相似文献   

19.
This paper investigates the plane problem of a frictional receding contact formed between an elastic functionally graded layer and a homogeneous half space, when they are pressed against each other. The graded layer is assumed to be an isotropic nonhomogeneous medium with an exponentially varying shear modulus and a constant Poisson’s ratio. A segment of the top surface of the graded layer is subject to both normal and tangential traction while rest of the surface is devoid of traction. The entire contact zone thus formed between the layer and the homogeneous medium can transmit both normal and tangential traction. It is assumed that the contact region is under sliding contact conditions with the Coulomb’s law used to relate the tangential traction to the normal component. Employing Fourier integral transforms and applying the necessary boundary conditions, the plane elasticity equations are reduced to a singular integral equation in which the unknowns are the contact pressure and the receding contact lengths. Ensuring mechanical equilibrium is an indispensable requirement warranted by the physics of the problem and therefore the global force and moment equilibrium conditions for the layer are supplemented to solve the problem. The Gauss–Chebyshev quadrature-collocation method is adopted to convert the singular integral equation to a set of overdetermined algebraic equations. This system is solved using a least squares method coupled with a novel iterative procedure to ensure that the force and moment equilibrium conditions are satisfied simultaneously. The main objective of this paper is to study the effect of friction coefficient and nonhomogeneity factor on the contact pressure distribution and the size of the contact region.  相似文献   

20.
Growth of the turbulent boundary layer over a flat plate rotating about an axis parallel to the leading edge is considered in which the axial length (or span) is contained between rotating radial end-plates (the hub and shroud, in effect, of a centrifugal impeller). The problem of the influence of the cross-flows in the boundary layers on the end-plates as they affect the blade boundary layer is considered. The latter is treated as a three-dimensional problem and the dependence of the solution on the boundary conditions is discussed. The integral equations of this boundary layer reduce to a pair of quasi-linear partial differential equations which are weakly elliptic, parabolic, or weakly hyperbolic according to the rotation number. When the equations are exactly parabolic and the boundary layers remain thin it is shown that the end-plate boundary layers can have no influence upon the blade boundary layer if the flow is initially radial; separation of the end-plate cross flows takes place in the corners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号