首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

2.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

3.
A rhodamine-conjugated coumarin (L) was used in designing a selective fluorescence chemosensor for the determination of trace amounts of Cr3+ ions in acetonitrile–water (MeCN/H2O (90:10, %v/v) solutions. The intensity of the fluoresce emission of the chemosensor is intensified upon addition of Cr3+ ions in MeCN/H2O (90:10, %v/v) solutions, due to the formation of a selective 1:1 complex between L and Cr3+ ions. The fluorescence enhancement versus Cr3+ concentration has been found to be linear from 1.0?×?10?7 to 1.8?×?10?5 M and a detection limit of 7.5?×?10?8 M. The proposed fluorescent probe proved to be highly selective towards Cr3+ ions as compared to other common metal ions and could be successfully applied to the determination of Cr3+ concentrations in some water and wastewater samples.  相似文献   

4.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

5.
A new voltammetric sensor, Langmuir–Blodgett (LB) film of a p‐tert‐butylcalix[4]arene derivative modified glassy carbon electrode, was designed and successfully used in simultaneous determination of Tl+ and Pb2+ by square‐wave anodic stripping voltammetry. Under the optimum experimental conditions, this newly developed sensor reveal good linear response for Tl+ and Pb2+ in the concentration range of 3×10?8–4×10?6 mol L?1 and 2×10?7–2×10?5 mol L?1 respectively. The detect limits are 2×10?8 mol L?1 for Tl+ and 8×10?8 mol L?1 for Pb2+. Using proposed method, Tl+ and Pb2+ in environment samples were determined with satisfactory results.  相似文献   

6.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

7.
《Electroanalysis》2004,16(8):633-639
A potentiometric sensor constructed from a mixture of 25% (m/m) spinel‐type manganese oxide (lambda‐MnO2), 50% (m/m) graphite powder and 25% (m/m) mineral oil is used for the determination of lithium ions in a flow injection analysis system. Experimental parameters, such as pH of the carrier solution, flow rate, injection sample volume, and selectivity for Li+ against other alkali and alkaline‐earth ions and the response time of this sensor were investigated. The sensor response to lithium ions was linear in the concentration range 8.6×10?5–1.0×10?2 mol L?1 with a slope 78.9±0.3 mV dec?1 over a wide pH range 7–10 (Tris buffer), without interference of other alkali and alkaline‐earth metals. For a flow rate of 5.0 mL min?1 and a injection sample volume of 408.6 μL, the relative standard deviation for repeated injections of a 5.0×10?4 mol L?1 lithium ions was 0.3%.  相似文献   

8.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   

9.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

10.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

11.
A novel chemiluminescence (CL) method for the determination of hydrogen peroxide is described. Method is based on the transition metals in highest oxidation state complex, which include diperiodatoargentate (DPA) and diperiodatonickelate (DPN) and show excellent sensitisation on the luminol-H2O2 CL reaction with low luminol concentration in alkaline medium. In particular, the sensitiser which was previously reported (such as Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, KIO4, K3Fe(CN)6 etc.) to be unobserved CL due to poor sensitisation with such low concentration of luminol which makes the method hold high selectivity. Based on this observation, the detection limits were 6.5?×?10?9?mol?L?1 and 1.1?×?10?8?mol?L?1 hydrogen peroxide for the DPN- and DPA-luminol CL systems, respectively. The relative CL intensity was linear with the hydrogen peroxide concentration in the range of 2.0?×?10?8–6.0?×?10?6?mol?L?1 and 4.0?×?10?8–4.0?×?10?6?mol?L?1 for the DPN- and DPA-luminol CL systems, respectively. The proposed method had good reproducibility with a relative standard deviation of 3.4% (8.0?×?10?7?mol?L?1, n?=?7) and 1.0% (2.0?×?10?6?mol?L?1, n?=?7) for the DPN- and DPA-luminol CL systems, respectively. A satisfactory result has been gained for the determination of H2O2 in rainwater and artificial lake water by use of the proposed method.  相似文献   

12.
A biosensor based on stearic acid-graphite powder modified with sweet potato (Ipomoea batatas (L.) Lam.) tissue as peroxidase source was constructed and applied in organic solvents. Several parameters were studied to evaluate the performance of this biosensor such as stearic acid-graphite powder and tissue composition, type and concentration of supporting electrolyte, organic solvents, water/organic solvent ratio (% v/v) and hydrogen peroxide concentration. After selection of the best conditions, the biosensor was applied for the determination of hydroquinone in cosmetic creams in methanol. At the peroxidase electrode hydroquinone is oxidized in the presence of hydrogen peroxide and the radical formed was reduced back electrochemically at –180 mV vs Ag/AgCl (3.0 mol L–1 KCl). The reduction current obtained was proportional to the concentration of hydroquinone from 6.2 × 10–5 to 1.5 × 10–3 mol L–1 (r = 0.9990) with a detection limit of 8.5 × 10–6 mol L–1. The recovery of hydroquinone from two samples ranged from 98.8 to 104.1% and an RSD lower than 1.0% for a solution containing ¶7.3 × 10–4 mol L–1 hydroquinone and 1.0 × 10–3 mol L–1 hydrogen peroxide in 0.10 mol L–1 tetrabutylammonium bromide methanol-phosphate buffer solution (95:5% v/v) (n = 10) was obtained.  相似文献   

13.
An adsorptive stripping voltammetric procedure for the determination of cobalt in a complex matrices at an in situ plated lead film electrode was described. The procedure exploits the enhancement effect of a cobalt peak observed in the system Co(II)–nioxime–piperazine‐1,4‐bis(2‐ethanesulfonic acid)–cetyltrimethylammonium bromide. The calibration graph was linear from 5×10?10 to 2×10?8 mol L?1 and from 1×10?10 to 1×10?9 mol L?1 for the accumulation times 120 and 600 s, respectively. The detection limit (based on the 3 σ criterion) for Co(II) following accumulation time of 600 s was 1.1×10?11 mol L?1. The interference of high concentrations of foreign ions and surfactants was studied.  相似文献   

14.
The fabrication and application of a novel electrochemical detector (ED) with nano crystalline Mn-doped lead dioxide film chemically modified electrode (CME) for liquid chromatography (LC) were described. The Mn-doped PbO2 film was characterized by scanning tunnel microscope. The electrochemical behaviors of tetrahydrobiopterin, monoamine neurotransmitters and their metabolites at the CME were investigated by cyclic voltammetry and differential pulse voltammetry. It was found that the CME exhibited efficiently electrocatalytic effect on the current response of the seven analytes and the linear ranges of them were over three orders of magnitude with the detection limits being 5.0 × 10?10 mol L?1 for tetrahydrobiopterin, 2.5 × 10?10 mol L?1 for dopamine, 2.0 × 10?10 mol L?1 for norepinephrine, 5.0 × 10?10 mol L?1 for serotonin, 4.0 × 10?10 mol L?1 for 3,4-dihydroxyphenylacetic acid, 2.0 × 10?9 mol L?1 for homovanillic acid, 1.0 × 10?9 mol L?1 for 5-hydroxyindoleacetic acid. For its stability, sensitivity, convenience in preparing and long-life of activity, the Mn-doped PbO2 electrode is therefore suitable for determination of real samples. Coupled with microdialysis sampling, the application of this method for the analysis of tetrahydrobiopterin, monoamine neurotransmitters and their metablites in rat brain was satisfactory.  相似文献   

15.
The determination of iron(II) with 1,10-phenanthroline in aqueous solutions was carried out exemplarily by thermal lens spectrometry. The peculiarities of analytical reactions at the nanogram level of reactants can be studied using this method. Under the conditions of the competing reaction of ligand protonation, the overall stability constant for iron(II) chelate with 1,10-phenanthroline was determined at a level of n × 10–7 mol L–1, logβ 3 = 21.3 ± 0.1. The rates of formation and dissociation of iron(II) tris-(1,10-phenanthrolinate) at a level of n × 10–8 mol L–1 were found to be (2.05 ± 0.05) × 10–2 min–1 and (3.0 ± 0.1) × 10–3 min–1, respectively. The conditions for the determination of iron(II) with 1,10-phenanthroline by thermal lensing were reconsidered, and ascorbic acid was shown to be the best reducing agent, which provided minimum and reproducible sample pretreatment. Changes in the conditions at the nanogram level improved both the selectivity and sensitivity of determination. The optimum measurement conditions for thermal lensing were determined not only by the absorption of the analyte and reagents, but also by the background absorption of the solvent. The limits of detection and quantification of iron(II) at 488.0 nm (excitation beam power 140 mW) are 1 × 10–9 and 6 × 10–9 mol L–1, respectively; the reproducibility RSD for the range n × 10–8–n × 10–6 mol L–1 is 2–5%.  相似文献   

16.
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand [2‐mercapto‐5‐(3‐nitrophenyl)‐1,3,4‐thiadiazole] (MNT), self‐assembled to gold nanoparticles (GNP) as suitable carrier for Cd(II) ion with potentiometric method are described. The proposed electrode exhibits a Nernstian slope of 29.4±1.0 mV per decade for Cd(II) ion over a wide concentration range from 3.1×10?8 to 3.1×10?4 mol L?1. The detection limit of electrode was 2.0×10?8 mol L?1 of cadmium ion. The potentiometric responses of electrode based on MNT is independent of the pH of test solution in the pH range 2.0–4.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrode was successfully employed to detect Cd(II) ion in hair and water samples.  相似文献   

17.
The voltammetric behavior of paraquat was investigated at hydroxyapatite‐modified carbon paste electrode HAP‐CPE in K2SO4. A method was developed for the detection of the trace of this herbicide, based on their redox reaction. The reduction peaks of paraquat were observed around ?0.70 V and ?1.00 V (vs. SCE) in square‐wave voltammetry. Experimental conditions were optimized by varying the accumulation time, apatite loading and measuring solution pH. Calibration plots were linear under the optimized parameters over the herbicide's concentration range 8–200×10?7 mol L?1, with a detection and quantification limits about 1.5×10?8 mol L?1 and 6.4 10?8 mol L?1, respectively.  相似文献   

18.
The present work describes the individual, selective and simultaneous quantification of acetaminophen (ACP) and tramadol hydrochloride (TRA) using a modification‐free boron‐doped diamond (BDD) electrode. Cyclic voltammetric measurements revealed that the profile of the binary mixtures of ACP and TRA were manifested by two irreversible oxidation peaks at about +1.04 V (for ACP) and +1.61 V (for TRA) in Britton‐Robinson (BR) buffer pH 3.0. TRA oxidation peak was significantly improved in the presence of anionic surfactant, sodium dodecyl sulfate (SDS), while ACP signal did not change. By employing square‐wave stripping mode in BR buffer pH 3.0 containing 8×10?4 mol L?1 SDS after 30 s accumulation under open‐circuit voltage, the BDD electrode could be used for quantification of ACP and TRA simultaneously in the ranges 1.0–70 μg mL?1 (6.6×10?6–4.6×10?4 mol L?1) and 1.0–70 μg mL?1 (3.3×10?6–2.3×10?4 mol L?1), with detection limits of 0.11 μg mL?1 (7.3×10?7 mol L?1) and 0.13 μg mL?1 (4.3×10?7 mol L?1), respectively. The practical applicability of the proposed approach was tested for the individual and simultaneous quantification of ACP and/or TRA in the pharmaceutical dosage forms.  相似文献   

19.
A simple adsorptive cathodic stripping voltammetry method has been developed for antimony (III and V) speciation using 4‐(2‐thiazolylazo) – resorcinol (TAR). The methodology involves controlled preconcentration at pH 5, during which antimony(III) – TAR complex is adsorbed onto a hanging mercury drop electrode followed by measuring the cathodic peak current (Ip,c) at ?0.39 V versus Ag/AgCl electrode. The plot of Ip,c versus antimony(III) concentration was linear in the range 1.35×10?9–9.53×10?8 mol L?1.The LOD and LOQ for Sb(III) were found 4.06×10?10 and 1.35×10?9 mol L?1, respectively. Antimony(V) species after reduction to antimony(III) with Na2SO3 were also determined. Analysis of antimony in environment water samples was applied satisfactorily.  相似文献   

20.
In this work, the new polyamine bisnaphthalimidopropyl‐4,4’‐diaminodiphenylmethane is proposed as a new ionophore for perchlorate potentiometric sensors. The optimal formulation for the membrane comprised of 12 mmol kg?1 of the ionophore, and 68 % (w/w) of 2‐nitrophenyl phenyl ether as plasticizer and 31 % (w/w) of high molecular weight PVC. The sensors were soaked in water for a week to allow leakage of anionic impurities and for one day in a perchlorate solution (10?4 mol L?1) to improve reproducibility due to its first usage. The stability constant for the ionophore‐perchlorate association in the membrane, log βIL1=3.18±0.04, ensured a performance characterized by the slope of 54.1 (±0.7) mV dec?1 to perchlorate solutions with concentrations between 1.24×10?7 and 1.00×10?3 mol L?1. The sensors are insensitive to pH between 3.5 to 11.0, they have a practical detection limit of 7.66 (±0.42) ×10?8 mol L?1 and a response time below 60 s for solutions with perchlorate concentrations above 5×10?6 mol L?1. The accuracy of the results was confirmed by the analysis of the contaminant in a certified reference water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号