首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Improvement from the pseudo-elastic effect of shape memory alloy (SMA) on the low-velocity impact (LVI) resistance of a composite plate is investigated by the finite element method (FEM).The stiffness matrix of the dynamic finite element equation is established step by step and the martensite fraction is obtained at each time step.The direct Newmark integration method is employed in solving the dynamic finite element equation,while the impact contact force is determined using the modified Hertz's law.It is found that SMA can effectively improve the performance of a composite structure subjected to low-velocity impact.Numerical results show that the deflection of a SMA-hybrid composite plate has been reduced approximately by thirty percent when the volume fraction of the embedded SMA reaches 0.3.  相似文献   

2.
以形状记忆合金(SMA)纤维增强复合材料板为研究对象,根据SMA拟弹性曲线的特性,建立了一种SMA拟弹性应力-应变关系的分段线性化模型;在此基础上,采用分步能量平衡法,求解了SMA增强复合材料板受低速冲击时的横向位移和应力,分析了SMA的拟弹性特性对复合材料板低速冲击性能的影响.研究结果表明,SMA的能量吸收特性能有效地增强复合材料板抗低速冲击能力,板的最大位移和最大应力都明显减少.冲击速度为10m/s的情况下,板的最大挠度和应力降低了18%左右;冲击速度为25 m/s的情况下,板的最大挠度和应力降低了42%左右.  相似文献   

3.
低速冲击下复合材料合板的响应过程模拟   总被引:4,自引:0,他引:4  
彭俊  刘元镛 《力学季刊》2001,22(1):138-142
运用一种精度较高的高阶位移模型分析了复合材料层合板在低速击下的响应过程,该位移模型能够同时考虑层间正应力和横向剪应力,另外,采用修正的Hertz接触定律与Newmark积分方法相结合,建立了冲击接触的有限元模型,本文的数值模拟计算结果与解析结果相比较证明了该方法的有效和精确性。  相似文献   

4.
以复合板中面的挠度响应作为不锈钢复合板抗冲击性能的评价指标,基于能量法和经典层合板理论,考虑层间结构参数设计,通过横向载荷下的弯曲平衡微分方程,建立冰载荷下不锈钢复合板挠度响应简化解析模型。该分析模型将整个动态响应分析过程分为冰载荷计算分析和动力学方程求解两个阶段。分析了冰载荷模型的面倾角、冲击速度和碰撞位置对冰载荷的影响,确定极端工况参数,汇总接触面的节点力数据;分析了层厚比对挠度响应的影响规律;基于LS-DYNA有限元仿真以及数值算例分析,对比挠度响应仿真结果和解析计算值,验证了本文简化解析模型的准确性,研究结果对不锈钢复合板抗冲击性能分析和评估具有一定的参考价值。  相似文献   

5.
熊克  陶宝祺  金江 《实验力学》2000,15(2):253-256
本文对形状记忆合金(SMA)增强复合材料连接件模型进行了初步的实验分析和计算,结果表明:NiTiSMA丝产生的回复应力对连接件模型孔应变有明显的影响,埋入NiTi丝的复合材料连接件模型的拉伸破坏载荷有所提高,本研究为改善复合材料连接的强度问题作了有益的探索。  相似文献   

6.
复合材料层压板低速冲击响应尺度效应数值模拟研究   总被引:1,自引:0,他引:1  
为了研究尺度效应对于复合材料层压板在低速冲击作用下的动态响应和冲击损伤的影响,基于相似理论,建立了三种不同尺寸的层压板受冲击的三维有限元模型。在该模型中,针对层压板的面内损伤,采用改进的Chang-Chang准则进行预测;针对层压板内层间分层损伤,则使用Cohesive界面单元进行模拟。一旦复合材料层压板在低速冲击作用下产生损伤,则对出现损伤的区域进行材料参数退化。采用该模型对三种不同尺寸的层压板的冲击过程进行有限元分析,并将不同冲击速度下的冲击响应进行比较,得出了如下结论:在层压板内未发生冲击损伤时,冲击产生的挠度和冲击力与相似理论解十分吻合,一旦出现冲击损伤,则冲击力的变化与相似理论解有所差别;如果两个缩放模型的冲击速度之比等于缩放比例的平方根,则两个模型中的相对分层尺寸基本是相同的,这个结果与已有的实验结果吻合;而对冲击后面内损伤的分析表明,其损伤尺寸不符合这一相似规律。  相似文献   

7.
Thermal post-buckled vibration of laminated composite doubly curved panel embedded with shape memory alloy (SMA) fiber is investigated and presented in this article. The geometry matrix and the nonlinear stiffness matrices are derived using Green–Lagrange type nonlinear kinematics in the framework of higher order shear deformation theory. In addition to that, material nonlinearity in shape memory alloy due to thermal load is incorporated by the marching technique. The developed mathematical model is discretized using a nonlinear finite element model and the sets of nonlinear governing equations are obtained using Hamilton’s principle. The equations are solved using the direct iterative method. The effect of nonlinearity both in geometric and material have been studied using the developed model and compared with those published literature. Effect of various geometric parameters such as thickness ratio, amplitude ratio, lamination scheme, support condition, prestrains of SMA, and volume fractions of SMA on the nonlinear free vibration behavior of thermally post-buckled composite flat/curved panel been studied in detail and reported.  相似文献   

8.
This study introduces a non-linear finite element analysis approach to the procedure of modeling hybrid laminate composite shells with embedded shape memory alloy (SMA) wire subjected to coupled structural and thermal loading. Numerical analyses of SMA wire reinforced composite laminates were carried out by synergizing the non-linear laminate shell element with Brison's model of the SMA constitutive law. To verify the proposed procedure, the present illustrative applications involve rectangular laminated panels clamped along one side. Analysis results were compared with corresponding experimental results from a prior study. Several test cases that depend on the volume fraction of SMA, temperature, and ply angles are presented to illustrate the highly entangled thermo-mechanical behavior of shape memory alloy hybrid composites (SMAHCs). The results of the numerical analysis show the ability of the suggested procedure to compute the thermo-mechanical behavior of a SMAHC in accordance with the SMA's internal phase transformations induced by stress and temperature variation and demonstrate very good agreement with experimental results.  相似文献   

9.
The aim of the paper is to develop a micro–macro approach for the analysis of the mechanical behavior of composites obtained embedding long fibers of Shape Memory Alloys (SMA) into an elastic matrix. In order to determine the overall constitutive response of the SMA composites, two homogenization techniques are proposed: one is based on the self-consistent method while the other on the analysis of a periodic composite. The overall response of the SMA composites is strongly influenced by the pseudo-elastic and shape memory effects occurring in the SMA material. In particular, it is assumed that the phase transformations in the SMA are governed by the wire temperature and by the average stress tensor acting in the fiber. A possible prestrain of the fibers is taken into account in the model.Numerical applications are developed in order to analyze the thermo-mechanical behavior of the SMA composite. The results obtained by the proposed procedures are compared with the ones determined through a micromechanical analysis of a periodic composite performed using suitable finite elements.Then, in order to study the macromechanical response of structural elements made of SMA composites, a three-dimensional finite element is developed implementing at each Gauss point the overall constitutive laws of the SMA composite obtained by the proposed homogenization procedures. Some numerical applications are developed in order to assess the efficiency of the proposed micro–macro model.  相似文献   

10.
A numerical model is proposed for the potential flow of an ideal incompressible fluid produced by impact of a body with concave bottom on water. Compression of the entrapped air is taken into account. The algorithm is based on joint solution of the equations of motion for the body and the fluid by the finite difference method with approximation in time. At each time, the boundaryvalue problem for the Laplace equation is solved by the boundaryelement method. Calculation results are given. The effects of the air layer, dimensions and shape of the corrugations, initial velocity, and other parameters on the impact process are shown.  相似文献   

11.
Dynamic transient response of a composite sandwich plate with a penny-shaped debonded zone has been studied by using the finite element analysis within the ABAQUS/Explicit code in this paper. In order to accurately predict the response of the debonded sandwich plate to impulsive loading, contact–impact and sliding conditions along the damaged skin-to-core interface were imposed in the model through a kinematic predictor/corrector contact algorithm. The accuracy of the finite element (FE) model used was verified by comparing between numerical predictions and experimental data known in literature for the frequency spectrum of a cracked polycarbonate laminated beam containing a delamination. By analyzing nonlinear aspects of the transient dynamics of the sandwich plate, it is shown that the presence of the debond significantly alters its short-term response. In this respect, a considerable influence of contact events within the debonded region on the plate’s global dynamic response was found out. These results were presented in both time and frequency domains. The predictions performed also showed that the FE model applied would be useful for nondestructive evaluation of defects in composite sandwich plates, and for studying dynamic response of such plates to impact.  相似文献   

12.
A thermomechanical model for a shape memory alloy (SMA) wire under uniaxial loading is implemented in a finite element framework, and simulation results are compared with mechanical and infrared experimental data. The constitutive model is a one–dimensional strain-gradient continuum model of an SMA wire element, including two internal field variables, possible unstable mechanical behavior, and the relevant thermomechanical couplings resulting from latent heat effects. The model is calibrated to recent and new experiments of typical commercially available polycrystalline NiTi wire. The shape memory effect and pseudoelastic behaviors are demonstrated numerically as a function of applied displacement rate and environmental parameters, and the results compare favorably to experimental data. The model is then used to simulate a simple SMA actuator device, and its performance is assessed for different thermal boundary conditions.  相似文献   

13.
孟莹  丁虎  陈立群 《力学学报》2021,53(11):2950-2960
基于圆板的压电能量采集技术在取代化学电池为低功耗电子器件提供能源方面具有巨大的潜能. 本文通过理论建模和数值仿真研究了考虑附加质量接触面积的压电圆板能量采集器的采集性能. 首先, 基于基尔霍夫薄板理论, 用广义哈密顿原理推导了带附加质量块的压电圆板能量采集器的机电耦合方程, 并用伽辽金法对方程近似离散, 通过离散方程得到电压、功率输出和最优负载阻抗的闭合解. 用有限元仿真对所提出的理论模型进行了验证, 结果表明该理论模型可以成功地预测压电圆板能量采集器输出电压和功率. 最后, 基于闭合解探讨了负载阻抗、附加质量块、压电圆板的内外半径等相关参数对压电圆板能量采集器固有频率、输出电压和功率的影响. 结果表明, 当质量块与复合板的接触半径足够小(本文中接触半径小于板半径的1/14)时, 质量块与复合圆板的接触面积可以忽略; 相较于无孔的压电片, 内径位于2.5 ~ 4 mm范围内的压电片可以提高能量采集器的采集性能; 附加质量、压电片外径和负载阻抗的合理选择既可以降低压电圆板的固有频率, 还可以提高其采集性能.   相似文献   

14.
形状记忆合金SMA主动驱动波纹板效率高,且性能稳定,在设计自适应智能结构上具有可观的前景。为有效利用有限元法对SMA波纹板结构进行计算分析,基于已有SMA本构模型推导了增量型SMA本构模型,据此编写了可由ABAQUS调用的用户材料(UMAT)子程序;利用该UMAT子程序对SMA主动驱动波纹板结构进行了数值模拟计算,与实验结果的对比验证了计算结果的有效性;在SMA波纹板原始结构基础上,提出了SMA短带错落布置型新结构,并进行了数值模拟分析与验证;提出了新结构的温度控制方案和提高驱动效果的措施,可为SMA驱动波纹板驱动器的设计与应用提供参考与借鉴。  相似文献   

15.
The exploitation of the elastocaloric effect in superelastic shape memory alloys (SMA) for cooling applications shows a promising energy efficiency potential but requires a better understanding of the non-homogeneous martensitic phase transformation. Temperature profiles on sputter-deposited superelastic \({\mathrm {Ti_{55.2}Ni_{29.3}Cu_{12.7}Co_{2.8}}}\) shape memory alloy thin films show localized release and absorption of heat during phase transformation induced by tensile deformation with a strong rate dependence. In this paper, a model for the simulation of the thermo-mechanically coupled transformation behavior of superelastic SMA is proposed and its capability to reproduce the mechanical and thermal responses observed during experiments is shown. The procedure for experiment and simulation is designed such that a significant temperature change from the initial temperature is obtained to allow potential cooling applications. The simulation of non-local effects is enabled by the use of a model based on the one-dimensional Müller–Achenbach–Seelecke model, extended by 3D mechanisms such as lateral contraction and by non-local interaction, leading to localization effects. It is implemented into the finite element software COMSOL Multiphysics, and comparisons of numerical and experimental results show that the model is capable of reproducing the localized transformation behavior with the same strain rate dependency. Additionally to the thermal and the mechanical behavior, the quantitative prediction of cooling performance with the presented model is shown.  相似文献   

16.
为深入研究柔性导爆索在爆炸分离装置中的作用过程和机理,提出一种改进的光滑粒子流体动力学方法(smoothed particle hydrodynamics, SPH)与有限单元法( finite element method, FEM)耦合算法。新方法中不仅包含导爆索模拟的SPH方法与分离装置模拟的FEM方法之间的接触算法,同时将完全损伤失效后的单元采用转化算法动态转化成SPH粒子继续参与计算,转化后的粒子与未转化的有限单元之间采用接触算法计算。采用该方法对环型和平板型两种爆炸分离结构的分离过程进行了数值模拟,验证了新方法的准确性与问题适用性;分析了分离板的变形断裂及损伤碎片的飞溅过程,得到了分离装置表面不同时刻的应力分布、损伤因子的变化趋势、von Mises应力的变化趋势;探讨了炸药在不同比内能情况下单元的屈服损伤速度、碎片的飞溅位移速度。  相似文献   

17.
Fiber-reinforced composite laminates (FRCL) is susceptible to the external impacting. Understanding the crack propagation and structural mechanical properties of the damaged FRCL under low-velocity oblique impact is of great value in practical application. A new analytical dynamic model is developed in this work to research the dynamic response and damage property of FRCL under oblique impacting. The displacement field and strain–displacement relations of the FRCL are established by utilizing higher-order shear plate theory. The matrix damage and fiber rupture in FRCL under oblique impacting are captured by an internal variable-based continuum damage constitutive relation. To accurately predict the oblique impacting force, an analytical dynamic impacting model is proposed basing on a developed contact model, where normal and tangential contact is coupled and solved simultaneously. The whole initial boundary value problem is iteratively solved by synthetically using finite differential method and Newmark-\(\beta \) method. The solving convergence and accuracy of the model is demonstrated and validated. Simulations show that the matrix damage is more easily to appear in FRCL under shear force due to oblique contact when under oblique impacting, and the damage profile is different from normal impacting. The dynamic responses of the FRCL plate under oblique impacting differ also greatly from normal impacting. The current research provides a theoretical basis for FRCL design and its engineering application when under low-velocity impacting.  相似文献   

18.
基于ABAQUS软件建立三种支持跨度的层压板三维有限元模型,分别计算在两种质量冲头冲击下的响应和损伤。结果表明,在判断支持跨度对冲击结果的影响时,要考虑冲头质量与板质量的比;在大质量冲头冲击的情况下,层压板的响应呈现准静态特征,层压板支持跨度的变化对,最大接触力、冲击持续时间、分层损伤面积等参数的影响较为简单明确;对于中等质量冲头情况,冲击接触时间减小,层压板振动明显,导致冲头与层压板在冲击过程中会脱离接触。在这种情况下不同跨度下板的响应差异也较为明显,冲击力的大小和损伤情况要依据具体的分析。从冲击接触时间和层压板固有振动周期的角度分析了冲头质量水平对冲击响应的影响。  相似文献   

19.
利用ABAQUS 有限元软件,采用合适材料参数及准则,建立平头弹及碎片撞击2A12-T4铝合金靶板的数值仿真模型。通过改变弹体与碎片之间的相对位置,研究弹体撞击靶板过程中碎片对其抗侵彻特性的影响规律及机理。通过数值仿真计算,分析弹体对靶体的撞击物理过程及失效机制。基于数值仿真计算结果可以发现,碎片对靶体抗侵彻性能受弹体速度以及弹体与碎片之间的相互位置等因素共同作用。对于靶体的抗撞击性能,弹体与碎片之间接触面积存在一个最佳值,接触面积太大或者太小都会减小靶板的损伤面积,从而减少撞击过程中靶板吸收的能量。  相似文献   

20.
Frictional sliding along an interface between two identical isotropic elastic plates under impact shear loading is investigated experimentally and numerically. The plates are held together by a compressive stress and one plate is subject to edge impact near the interface. The experiments exhibit both a crack-like and a pulse-like mode of sliding. Plane stress finite element calculations modeling the experimental configuration are carried out, with the interface characterized by a rate and state dependent frictional law. A variety of sliding modes are obtained in the calculations depending on the impact velocity, the initial compressive stress and the values of interface variables. For low values of the initial compressive stress and impact velocity, sliding occurs in a crack-like mode. For higher values of the initial compressive stress and/or impact velocity, sliding takes place in a pulse-like mode. One pulse-like mode involves well-separated pulses with the pulse amplitude increasing with propagation distance. Another pulse-like mode involves a pulse train of essentially constant amplitude. The propagation speed of the leading pulse (or of the tip of the crack-like sliding region) is near the longitudinal wave speed and never less than times the shear wave speed. Supersonic trailing pulses are seen both experimentally and computationally. The trends in the calculations are compared with those seen in the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号