首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films
Authors:F Welsch  J Ullrich  H Ossmer  M Schmidt  M Kohl  C Chluba  E Quandt  A Schütze  S Seelecke
Institution:1.Intelligent Material Systems Lab,Saarland University,Saarbruecken,Germany;2.Lab for Measurement Technology,Saarland University,Saarbruecken,Germany;3.Institute of Microstructure Technology,Karlsruhe Institute of Technology,Karlsruhe,Germany;4.Institute for Material Science,University of Kiel,Kiel,Germany
Abstract:The exploitation of the elastocaloric effect in superelastic shape memory alloys (SMA) for cooling applications shows a promising energy efficiency potential but requires a better understanding of the non-homogeneous martensitic phase transformation. Temperature profiles on sputter-deposited superelastic \({\mathrm {Ti_{55.2}Ni_{29.3}Cu_{12.7}Co_{2.8}}}\) shape memory alloy thin films show localized release and absorption of heat during phase transformation induced by tensile deformation with a strong rate dependence. In this paper, a model for the simulation of the thermo-mechanically coupled transformation behavior of superelastic SMA is proposed and its capability to reproduce the mechanical and thermal responses observed during experiments is shown. The procedure for experiment and simulation is designed such that a significant temperature change from the initial temperature is obtained to allow potential cooling applications. The simulation of non-local effects is enabled by the use of a model based on the one-dimensional Müller–Achenbach–Seelecke model, extended by 3D mechanisms such as lateral contraction and by non-local interaction, leading to localization effects. It is implemented into the finite element software COMSOL Multiphysics, and comparisons of numerical and experimental results show that the model is capable of reproducing the localized transformation behavior with the same strain rate dependency. Additionally to the thermal and the mechanical behavior, the quantitative prediction of cooling performance with the presented model is shown.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号