首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于室温量子级联激光器的脉内光谱技术测量N_2O   总被引:2,自引:0,他引:2  
中红外激光光源覆盖了大鼍气体的基频吸收带,尤其适合于痕量气体的高灵敏检测.其中具有高输出功率、宽调谐范围、能够在室温工作的量子级联激光器为高灵敏痕量气体检测技术的研究提供了理想的光源.基于脉冲量子级联激光器的脉内光谱技术提供了一种简单而又有效的测量痕量气体的方法.当一个长激发脉冲作用在激光器上时,激光器的频率随着脉冲持续时间的增加而线性减小,从而在单个脉冲上扫描出被测气体分子的特征吸收谱线,实现对目标气体的定性或者定量分析.介绍了基于分布式量子级联激光器的脉内光谱技术,并采用该技术对N_2O进行了光谱测量.一个500 ns的长激发脉冲应用在脉冲量子级联激光器上用于快速波长扫描,达到接近1 cm~(-1)的线性调谐范围,得到了中心在1 274 cm~(-1)附近的N_2O的吸收谱线,与HITRAN数据库相应的N_2O吸收谱线有着良好的一致性.  相似文献   

2.
量子级联激光器作为一种新型的单极型半导体激光器,其峰值发射波长处于中红外波段(2.5~25 μm),具有功率高、线宽窄、响应速率快等传统半导体激光器所没有的独特优势,且具有较高的探测灵敏度,非常适合中红外波段的气体分子的检测。可广泛应用于大气痕量气体、呼吸气体、燃烧气体、生化气体、机动车尾气、工业废气以及农药残留气体等低浓度气体的检测。因此,利用量子级联激光器对气体分子进行探测在非侵入式医学诊断、环境监测以及工农业生产等领域都具有十分重要的意义。自20世纪末量子级联激光器发明以来,室温激光器的性能得到了长足的进步,也出现了多种结构形式的量子级联激光器。这也使得量子级联激光器红外吸收光谱技术得到了很大的发展。事实上,很多光谱技术在量子级联激光器发明之前就已经得到了发展和应用,而利用量子级联激光器作为光源则在很大程度上扩展了可探测波段,也在一定程度上提高了探测极限。这其中就包括了直接吸收光谱技术、波长调制技术、腔衰荡光谱技术、腔增强吸收光谱技术以及光声光谱等。综述了国内外量子级联激光器进行红外吸收光谱技术的研究现状和发展趋势,分析了量子级联激光器红外吸收光谱技术在发展过程中所遇到的瓶颈以及后期得到的解决方案,比较详细地介绍了各种方法的原理、应用,并指出了在吸收光谱测量中的优缺点,同时对外场痕量气体探测作了简要总结。最后,对量子级联激光器红外吸收光谱技术在未来痕量气体探测上的应用和发展进行了展望,指出随着红外吸收光谱技术的快速发展,这些方法可以得到更有效的改进和发展,进而朝着高灵敏度、高集成度以及高时效方向发展。  相似文献   

3.
压强是工业生产过程中的一个重要参数,其准确测量是过程控制的关键。气体分子光谱线型和线宽取决于分子间相互作用和温度、气压等因素,利用窄线宽气体吸收光谱的压力展宽效应,可通过高分辨地测量气体吸收谱线得到压强信息,实现压力计校准。提出了一种基于光腔衰荡光谱技术和气体吸收谱线压力展宽效应的压力计校准方法。采用5.2 μm可调谐量子级联激光器,基于连续光腔衰荡光谱技术建立了压力计校准实验装置。室温下,测量水汽在1 877 cm-1附近的一吸收谱线,线宽为0.084 21 cm-1,重复性测量误差小于1.53×10-4 cm-1,对应的压强大小为98.12 kPa,检测灵敏度优于0.18 kPa,与高精度压力计读数98.14 kPa一致。利用测试谱线线宽与压强的关系得到压力展宽系数(0.087 12±0.000 965) cm-1·atm-1,与HITARN数据库参考值0.087 1 cm-1·atm-1一致。实验校准了一小量程压力计。结果表明基于光腔衰荡光谱的高分辨吸收谱线测量在压强检测和压力计校准领域具有很好的应用前景。  相似文献   

4.
量子级联(QC)激光器是唯一能在室温产生中红外辐射的半导体激光器。它的宽调谐范围、高输出功率和单模工作的特性,使得它非常适用于高分辨率光谱分析。结合中红外光谱区是气体分子的基频强吸收特性,基于室温脉冲工作的量子级联激光器的吸收光谱检测技术以其灵敏度高、选择性强及响应快速等特点,成为痕量气体探测的有效方法。介绍了基于分布式量子级联激光器的脉间光谱技术,通过分析比较不同工作参数下的激光光谱信号,寻求最佳的激光器工作参数,并且在选定的工作参数下对目标气体的吸收谱线进行测量,得到了中心在2178.2cm-1附近的N2O的吸收谱线。  相似文献   

5.
腔衰荡光谱技术(CRDS)作为一种具有高灵敏度高光谱分辨率的检测方法已被广泛用于痕量气体检测。而目前基于CRDS痕量气体检测多针对单一气体进行测量或通过多个激光器产生的多光束进行多种组分气体浓度测量。利用DFB激光器波长可调谐特性,通过强弱吸收峰结合,使用单光束实现了多种温室气体的腔衰荡光谱技术同步检测。由于大气中水汽和二氧化碳浓度较高,为实现同一衰荡系统对三种温室气体的同步测量,在平衡吸收损耗的基础上,选取1 653~1 654 nm内甲烷的强吸收峰与水汽、二氧化碳的弱吸收峰进行测量。通过光谱叠加反演矩阵,分别得到甲烷、水汽、二氧化碳的浓度。在计算测量灵敏度过程中发现,通过去除衰荡过程初期的部分数据点(过滤区间),会对噪声等效吸收系数产生影响。多数情况下,在测量灵敏度计算方面,列文伯格-马夸尔特算法(L-M)会优于离散傅里叶变换法(DFT);但当衰荡曲线的单指数性下降时,上述结论不一定成立。搭建了一个低精细度(F≈6×103)衰荡腔对上述结论进行了实验验证。相较于用于测量温室气体浓度的高精细度衰荡腔(F≈1×105),低精细度衰荡腔的衰荡速率较快,衰荡曲线的单指数性明显低于高精细度衰荡腔。实验表明,在过滤区间长度较短时,采用DFT算法计算得到的噪声等效吸收系数会小于L-M算法得到的结果。当过滤区间长度增加时,L-M算法得到的结果优于DFT算法。在受过滤区间长度影响方面,DFT算法的波动性要明显小于L-M算法。根据Allan方差分析,在512次采样平均(约8 s)下的最小噪声等效吸收系数进行计算,该CRDS装置测量灵敏度为2.4×10-10 cm-1。在25 ℃标准大气压下,对应甲烷、水汽、二氧化碳的测量灵敏度分别为0.64 ppbv,3.5 ppmv和4.0 ppmv。基于该CRDS装置,通过单光束多波长测量方法,利用光谱叠加反演矩阵,测得大气中甲烷、水汽、二氧化碳浓度分别为2.018,3 654和526 ppmv;而采用经典CRDS单波长测量得到的甲烷、水汽、二氧化碳浓度分别为2.037,3 898和630 ppmv。通过与温控调节波长,逐点扫描得到的光谱吸收曲线进行对比,采用多波长测量得到气体浓度进行复合拟合的光谱曲线残差小于单波长测量得到气体浓度进行简单拟合的光谱曲线残差。  相似文献   

6.
量子级联激光器是一种新型的红外相干光源。利用量子理论与带隙工程,量子级联激光器可实现3 μm到100 μm波长范围内的任意输出波长。由于大多数气体分子的特征光谱都集中在中红外波段,而中红外量子级联激光器具有功率高、线宽窄、扫描速度快等独特的优点,因此,基于量子级联激光器的红外光谱技术已成为气体检测技术的研究热点。尤其是,近年来室温激光器性能得到不断的完善,输出功率和电光转换效率得到了极大的提高,这在很大程度上推动了红外激光光谱技术的迅速发展。本文根据工作原理,分别介绍了基于直接吸收谱检测、相位调制光谱检测、光声调制光谱检测和法拉第旋光效应光谱检测的量子级联激光器红外光谱检测技术,并对其实现方法和应用情况进行了介绍。  相似文献   

7.
基于通讯波段的分布式反馈半导体激光器(DFB),搭建了一套光腔衰荡光谱仪(CRDS)。衰荡光腔由一对反射率高于99.997%的高反镜组成,衰荡腔长约为130 cm,空腔衰荡时间约为150 μs。当光谱平均次数达到1 000次时,光谱仪灵敏度(最小可探测吸收系数)达到5×10-12 cm-1。利用热隔绝的方式稳定衰荡腔长,并使用衰荡光腔自身作为光学标准具,来标定光谱的频率:利用反馈式光谱扫描程序步进改变激光器频率,使之与衰荡腔的纵模频率逐一匹配,从而实现所测得光谱的自动标定。通过测量一氧化碳分子在1.565 μm附近的吸收光谱,测定气体中一氧化碳的含量。将光谱测量结果和标准样品中的一氧化碳含量进行对比,对装置的定量精度进行了检验,表明其对一氧化碳的探测极限达4 ppbv。利用该装置对实际大气中一氧化碳的含量进行了实时监测。  相似文献   

8.
介绍基于光腔衰荡光谱技术的光学湿度测量装置.该装置具有高真空兼容性,衰荡腔由低膨胀的殷钢制成,并利用其自身的自由光谱范围实现光谱的自标定.使用单个在1.39 μm的半导体激光器,实 现了从真空、高纯氦气中痕量水汽,一直到大气湿度的测量,可测量的水汽分压范围极大:0.1 μPa~1 kPa.该光学湿度计可用于作为基本水汽标准,以及测定低温下水(冰)的蒸气压.  相似文献   

9.
为了对痕量甲烷(CH4)进行非接触式检测,采用可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)的检测技术,利用CH4位于中红外波段1 332.8cm-1吸收谱线,设计并研制出痕量CH4检测仪。该仪器使用中心波长为7.5μm的中红外量子级联激光器(QCL),通过调谐系数-0.2cm-1·A-1,采用固定工作温度调节其注入电流(0.6~1.6 A)的方式使其发光光谱扫描CH4气体吸收谱线(1 332.8cm-1)。在光学结构方面,该仪器采用光程为76m的herriott长光程密闭气体吸收气室,配合差分检测光路,降低了由激光光源波动引起的噪声,确保对痕量CH4进行检测。实验中,实现了40×10-9最低检测下限,检测结果的相对误差为0.09%,稳定度优于2.8%,验证了该仪器的可行性。  相似文献   

10.
马欲飞  何应  于欣  于光  张静波  孙锐 《物理学报》2016,65(6):60701-060701
采用石英增强光声光谱(QEPAS)技术对CO痕量气体展开检测研究. 为了实现超高灵敏度探测, 采用输出波长为4.6 μm的新颖中红外高功率分布反馈量子级联激光器为光源, 实现了对CO气体基频吸收带的激发与测量. 在优化了调制深度、气体压强和提高了CO分子的振动-转动弛豫速率后, 获得了1.95 ppbv的优异探测极限. 在分析检测结果的过程中, 讨论了能级寿命对信号强度的影响, 并对QEPAS信号强度的表达式进行了修正.  相似文献   

11.
中红外为分子的基频吸收波段,可被用于痕量气体的高灵敏度检测。介绍了基于中红外室温连续量子级联激光器(CW-QCL)结合波长调制技术(WMS)的光谱检测方法,研究了消除气体间交叉干扰的方法,并进行了相关的验证实验。利用中心波长在1274cm-1波段附近的量子级联激光器搭建了一套开放光路温室气体探测实验系统,进行101m开放式测量实验,实现了对大气中CH4、N2O的同步在线测量,检测限分别为3.87×10-9和1.28×10-9,验证了实验系统和实验方法的可行性,为实现区域高灵敏温室气体监测奠定了基础。  相似文献   

12.
中红外激光领域广泛使用高性能高反射光学元件,高反射率高精度测试技术是制备高性能反射光学元件的基础。针对2.7~3.0μm波段光学元件高反射率测量的实际需求,基于量子级联激光器建立了连续光腔衰荡反射率测试实验装置,通过优选2.7~3.0μm波段反射带内水汽吸收较弱的测试波长,分析空气中水汽吸收对衰荡时间和反射率测量的影响,并比较空气和氮气环境下反射率测量结果,实现了2.7~3.0μm波段高反镜反射率的准确测量,在反射率约99.95%时绝对测量精度优于2×10-5。实验结果显示,采用测试波长2.9μm并在测量时保证初始腔和测试腔腔长相同,无需使用氮气环境,直接在实验室空气环境可实现高反射率的精确测量。  相似文献   

13.
康鹏  孙羽  王进  刘安雯  胡水明 《物理学报》2018,67(10):104206-104206
利用高精细度光腔锁定激光频率,实现了对分子吸收光谱的高精度测量.光腔采用低热膨胀系数的殷钢结构设计和温度控制,实现了腔长度的稳定;通过将激光频率锁定在光腔纵模上,实现了高频率精度和高灵敏度的光腔衰荡光谱测量.利用该装置示范性地测量了二氧化碳分子在6470.42 cm~(-1)附近的光腔衰荡光谱和色散光谱,得到了高精度的谱线参数,并和数据库谱线参数进行了对比.  相似文献   

14.
搭建了基于近红外连续激光器的高灵敏度快速扫描光腔衰荡光谱仪(SC-CRDS)。通过压电陶瓷(PZT)快速扫描腔长,并用跟踪电路使腔长自动跟踪激光波长变化,实现衰荡光谱的快速测量。利用CH4在1653.73 nm(6046.95 cm-1)附近的光谱吸收峰,用该装置对CH4气体含量进行测量。通过测量多个光谱点确定吸收线中心吸收峰值和激光波长,并反馈补偿激光中心波长使其稳定在吸收线,成功解决了由于激光器波长/频率严重漂移导致的不能持续准确测量问题。利用标准浓度的CH4样品校准其1653.73 nm吸收峰谱线强度。该光腔衰荡光谱仪装置结构简单,性能稳定,CH4浓度检测限达到1.0×10-9,可用于长时间监测室外空气中的CH4浓度。  相似文献   

15.
乙烷是电力变压器油中溶解的主要故障特征气体之一,其高精度、高灵敏度检测是进行油中溶解气体分析的关键。基于光反馈原理及腔增强吸收光谱技术,结合量子级联激光器,建立了一套变压器油中溶解乙烷气体检测系统。基于腔内单腔模对称理论,通过LabVIEW编程来实现反馈光与腔谐振的相位匹配。研究并实现了光学反馈效应(激光将在延迟一定的时间后,返回激光腔并锁定腔模式共振频率)、偶数和奇数模式效应(交替出现强度较大和较小的腔模式)、激光器阈值电流降低效应(约1.2mA)。利用腔衰荡光谱检测技术测得的系统有效反射率、腔品质因素分别为99.978%和7138.4,系统光谱分辨率达到0.005 2cm-1。标准大气压、温度20℃下,1s的积分时间内,对乙烷PQ3吸收线进行检测,系统检测准确率及检测极限分别达到95.72%±0.17%和(1.97±0.06)×10-3μL·L-1,满足了变压器油中溶解乙烷气体检测的需要。  相似文献   

16.
作为一种新型半导体激光器,量子级联激光器因其独特的子带间跃迁机制,具有高速响应、高非线性、输出波长大范围可调等特点。近年来随着输出光功率和电光转化效率等性能指标的快速提升,量子级联激光器已成为中红外至太赫兹波段(波长约为3~300μm)的主流激光光源,在大气污染监控、气体检测、太赫兹成像、生物医疗以及空间光通信等领域具有重要科学意义和应用价值。本文阐释了量子级联激光器的发展历程以及工作原理;分别重点讨论了中红外量子级联激光器在高效率、大功率、波长可调谐以及片上传感的应用等方面的研究进展,并对基于中红外量子级联激光器差频太赫兹光源和光频梳的发展进行叙述,最后进行了简要总结与展望。  相似文献   

17.
在光反馈式腔衰荡光谱技术中,光谱数据的处理因一种特殊的光谱纹波现象而变得困难。以6 590.8~6 591cm-1光谱范围内水汽分子的光反馈式腔衰荡光谱为基础,根据光谱纹波效应的特性分析结果,提出了一种简单的数据处理法。利用该方法确定了6 590.871cm-1处水汽分子吸收谱线的线宽约为0.100 3cm-1,这与Hitran数据库提供的线宽结果仅0.002cm-1的误差,充分验证了该方法的有效性。  相似文献   

18.
几乎所有小的气相分子(如H2O,CO2等)均具有独特的近红外吸收光谱,在负压条件下,每种微小的气相分子都拥有一对一的特征光谱线,基于这一原理人们开始使用激光光谱(IRIS)技术来准确分析气体样品中的同位素组成。该方法克服了传统同位素比质谱(isotope ratio mass spectrometry, IRMS)方法的局限性,已经成为公认的高精度、高灵敏度和高准确度的痕量气体检测方法。以大气水汽稳定同位素研究为例,大气水汽稳定同位素组成对水汽源区及其通道上的输送过程等水循环研究有着重要的指示意义。激光光谱技术使得大气水汽氢氧稳定同位素(δ18O和δD)野外原位连续高分辨率观测成为可能。但是,其观测精度和准确度受仪器运作特点、不同浓度大气水汽对特定光谱吸收性的敏感性差异等因素的影响,通常观测结果具有明显的非线性响应问题。因此,有必要对仪器观测过程中出现的各种偏差进行校正,但现阶段许多用户对新观测技术的国际校正方法尚不清楚。因此,基于波长扫描-光腔衰荡光谱(WS-CRDS)技术的大气水汽同位素观测系统(Picarro L2120-i),通过可调谐二极管激光器(Tunable Diode Laser, TDL)发射可被待测气体分子所吸收的不同波长的激光,测量不同波长下的衰荡时间(即有样品吸收的衰荡时间);TDL发射不能被待测气体吸收的不同波长的激光,测量每个波长下的衰荡时间(相当于无样品吸收的衰荡时间)。通过分析有无样品吸收的衰荡时间差,高精度计算待测气体的分子浓度,进而计算水汽稳定同位素组成。从记忆效应、漂移效应、浓度效应等方面,系统建立了一套准确可靠的大气水汽稳定同位素观测流程与校正方法,为正在使用或将要使用此类设备的研究人员提供参考,以获得高精度和高可靠性的大气水汽稳定同位素观测数据。  相似文献   

19.
基于锑化物的带间级联激光器同时具有带间跃迁的高增益和级联结构的高量子效率,是中红外波段重要的相干光源,其功耗低于其它中红外半导体激光器,因而单模带间级联激光器在基于激光吸收光谱技术的高分辨气体检测和化学传感等领域具有很大的优势。目前利用Bragg光栅实现波长选择的单模分布反馈带间级联激光器已经实现商品化,但是,与同样有源区结构的Fabry-Pérot腔带间级联激光器最高600 mW的出光功率相比,单模功率最高55 mW,损耗较大。对几种不同结构的分布反馈带间级联激光器的性能进行对比分析,探讨这类单模中红外激光器损耗的主要来源以及改进思路。此外,介绍了垂直腔面发射和光子晶体带间级联激光器的进展,并与分布反馈带间级联激光器的性能进行比较,讨论其优缺点及适用的场景。  相似文献   

20.
NH_3是大气二次细颗粒物的主要前驱物之一,NH_3浓度的准确测量对于大气环境监测和保护具有重要意义。近红外波段激光器的成本较低,但采用其测量NH_3时,普遍存在受环境中H_2O、CO_2气体干扰以及吸收光程较短等问题。为克服环境中H_2O、CO_2干扰气体的影响,筛选出中心波数为6521.97 cm~(-1)的吸收谱线,利用该谱线对大气环境中痕量NH_3的浓度进行测量。该谱线不受环境中CO_2吸收的影响,且在低压条件下与H_2O吸收谱线的重叠范围较小,通过多峰拟合可以准确提取出NH_3的光谱吸收率。基于分布反馈式激光器搭建了一套腔衰荡吸收光谱测量装置,在该装置中,衰荡光腔由一对反射率高达99.996%的高反镜构成,空腔衰荡时间约96μs,有效吸收光程可达1.6×10~4 m。利用该装置对大气环境中痕量NH_3的浓度进行测量,结果表明:该测量系统的探测灵敏度可以达到3.9×10~(-10)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号