首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在对含有柔性元件的复杂航天器进行稳定性等动力学行为的分析中, 通常采用的离散化方法, 可能会导致"动力刚化"等现 象.将梁作为带分布参数的子系统(无限自由度)分析, 基于Rumyancev定理, 通过计算系统相对势能泛函的一阶变分得到了系统的定常运动, 把系统定常运动稳定性的分析归结为系统变势能泛函存在孤立极小值的问题.在分析中不需要建立系统的运动微分方程, 简化了建模过程, 由系统相对势能泛函的二阶变分的正定性得到了使系统定常运动稳定的充分条件, 同时这个条件是使用基于李雅普诺夫直接法思想分析运动稳定性问题得到的最为广泛的充分条件.  相似文献   

2.
The governing equation of motion of gradient elastic flexural Kirchhoff plates, including the effect of in-plane constant forces on bending, is explicitly derived. This is accomplished by appropriately combining the equations of flexural motion in terms of moments, shear and in-plane forces, the moment–stress relations and the stress–strain equations of a simple strain gradient elastic theory with just one constant (the internal length squared), in addition to the two classical elastic moduli. The resulting partial differential equation in terms of the lateral deflection of the plate is of the sixth order instead of the fourth, which is the case for the classical elastic case. Three boundary value problems dealing with static, stability and dynamic analysis of a rectangular simply supported all-around gradient elastic flexural plate are solved analytically. Non-classical boundary conditions, in additional to the classical ones, have to be utilized. An assessment of the effect of the gradient coefficient on the static or dynamic response of the plate, its buckling load and natural frequencies is also made by comparing the gradient type of solutions against the classical ones.  相似文献   

3.
The present work deals with the dynamic stability of a symmetric sandwich beam with magnetorheological elastomer (MRE) embedded viscoelastic core and conductive skins subjected to time varying axial force and magnetic field. The conductive skins induce magnetic loads and moments under the application of magnetic field during vibration. The MRE part works in shear mode and hence the dynamic properties of the sandwich beam can be controlled by magnetic fields due to the field dependent shear modulus of MRE material. Considering the core to be incompressible in transverse direction, classical sandwich beam theory has been used along with extended Hamilton's principle and Galarkin's method to derive the governing equation of motion. The resulting equation reduces to that of a multi-frequency parametrically excited system. Second order method of multiple scales has been used to study the stability of the system for simply supported and clamped free sandwich beams. Here the experimentally obtained properties of magnetorheological elastomers based on natural rubber have been considered in the numerical simulation. The results suggest that the stability of the MRE embedded sandwich beam can be improved by using magnetic field.  相似文献   

4.
Jin Zhang  Yiming Fu 《Meccanica》2012,47(7):1649-1658
A new beam model is developed for the viscoelastic microbeam based on a modified couple stress model which contains only one material length scale parameter. The governing equations of equilibrium together with initial conditions and boundary conditions are obtained by a combination of the basic equations of modified couple stress theory and Hamilton’s principle. This new beam model is then used for an electrically actuated microbeam-based MEMS structure. The dynamic and quasi-static governing equations of an electrically actuated viscoelastic microbeam are firstly given where the axial force created by the midplane stretching effect is also considered. Galerkin method is used to solve above equation and this method is also validated by the finite element method (FEM) when our model is reduced into an elastic case. The numerical results show that the instantaneous pull-in voltage, durable pull-in voltage and pull-in delay time predicted by this newly developed model is larger (longer) than that predicted by the classical beam model. A comparison between the quasi-static model results and the dynamic model results is also given.  相似文献   

5.
In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles.The heat transfer (Laplace equation) is solved with the use of the finite difference method (FDM) of the third-order accuracy, while the integrals along the beam thickness defining the thermal stress and moments are computed using Simpson's method. Partial differential equations governing the beam motion are reduced to the Cauchy problem by means of application of FDM of the second-order accuracy. The obtained ordinary differential equations are solved with the use of the fourth-order Runge-Kutta method.The problem of numerical results convergence versus a number of beam partitions is investigated. A static solution for a flexible Bernoulli-Euler beam is obtained using the dynamic approach based on employment of the relaxation/set-up method.Novel stability loss phenomena of a beam under the thermal field are reported for different beam geometric parameters, boundary conditions, and the temperature intensity. In particular, it has been shown that stability of the flexible beam during heating the beam surface essentially depends on the beam thickness.  相似文献   

6.
The dynamic response of orthotropic sandwich composite plates impacted by time-dependent external blast pulses is studied by use of numerical techniques. The theory is based on classical sandwich plate theory including the large deformation effects, such as geometric non-linearities, in-plane stiffness and inertias, and shear deformation. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solutions are assumed for the space domain and substituted into the equations of motion. Then the Galerkin Method is used to obtain the non-linear differential equations in the time domain. The finite difference method is applied to solve the system of coupled non-linear equations. The results of theoretical analyses are obtained and compared with ANSYS results. Effects of the face sheet number, as well as those related to the ply-thickness, core thickness, geometrical non-linearities, and of the aspect ratio are investigated. Detailed analyses of the influence of different type of pressure pulses on dynamic response are carried out.  相似文献   

7.
Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.  相似文献   

8.
计及热应变的空间曲梁的刚-柔耦合动力学   总被引:1,自引:1,他引:1  
研究带中心刚体的作大范围运动的空间曲梁的刚-柔耦合动力学.结合混合坐标法和绝对坐标法的特点,取与中心刚体大范围运动有关的变量和柔性梁各单元节点相对中心刚体连体基的位移和斜率作为广义坐标,建立了一种新的柔性梁的刚柔耦合模型.基于精确的应变和位移的关系式,根据Jourdian速度变分原理,建立了带中心刚体柔性曲梁的有限元离散的动力学方程.数值对比了空间曲梁系统和空间直梁系统的刚柔耦合动力学性质,用能量守恒规律验证了文中曲梁模型的合理性.在此基础上,在应变能中计及热应变,研究温度增高引起的曲梁的热膨胀对系统的动力学性态的影响.  相似文献   

9.
Due to the increasing interests in using functionally graded piezoelectric materials(FGPMs) in the design of advanced micro-electro-mechanical systems, it is important to understand the stability behaviors of the FGPM beams. In this study, considering the effects of geometrical nonlinearity, temperature, and electricity in the constitutive relations and the effect of the magnetic field on the FGPM beam, the Euler-Bernoulli beam model is adopted, and the nonlinear governing equation of motion is derived via Hamilton's principle. A perturbation method, which can decompose the deflection into static and dynamic components, is utilized to linearize the nonlinear governing equation. Then,a dynamic stability analysis is carried out, and the approximate analytical solutions for the nonlinear frequency and boundary frequencies of the unstable region are obtained.Numerical examples are performed to verify the present analysis. The effects of the static deflection, the static load factor, the temperature change, and the magnetic field flux on the stability behaviors of the FGPM beam are discussed. From the proposed analytical solutions and numerical results, one can easily and clearly find the effects of various controlled parameters, such as geometric and physical properties of the system, on the mechanical behaviors of structures, and the conclusions are very important and useful for the design of micro-devices.  相似文献   

10.
The problem of nonlinear wave dynamics of a fluid-saturated porous medium is investigated. The mathematical model proposed is based on the classical Frenkel--Biot--Nikolaevskiy theory concerning elastic wave propagation and includes mass, momentum, energy conservation laws, as well as rheological and thermodynamic relations. The model describes nonlinear, dispersive, and dissipative medium. To solve the system of differential equations, an asymptotic modified two-scales method is developed and a Cauchy problem for initial equations system is transformed to a Cauchy problem for nonlinear generalized Korteweg--de Vries--Burgers equation for modulated quick wave amplitudes and an inhomogeneous set of equations for slow background motion. Stationary solutions of the derived evolutionary equation that have been constructed numerically reflect different regimes of elastic wave attenuation: diffusive, oscillating, and soliton-like.  相似文献   

11.
含孔von Karman板中非线性波散射与边值问题   总被引:2,自引:1,他引:1  
基于von Karman板大挠度弯曲理论,利用小参数摄动法,分析研究了含孔vonKarman板的非线性波散射与动应力集中问题,其中一类可看成是薄板弯曲波动问题的控制方程。当有单频波入射时,由于弯曲应力与膜应力状态的非线性耦合,孔洞会产生高次谐波散射现象。建立了求解本问题的边界积分方程法,利用积分方程法交替求求这两类问题,最终可获得问题的近似分析解。  相似文献   

12.
We consider the problem of static and dynamic buckling modes of thin shells under external hydrostatic pressure. If the statement of the problem uses the linearized equations of motion obtained in the moderately large bending theory of shells according to the classical or refined model, then part of terms related to the external load in these equations are assumed to be conservative, and the other terms are assumed to be nonconservative. In this connection, we study four statements of the elastic stability problem for a cylindrical shell with hinged faces. The first of them is the statement of the static boundary value problem in the sense of Euler, where the action of external pressure is assumed to be conservative. The second statement is used to study small vibrations near the static equilibrium by a dynamic method for the same conservative load. The third and fourth statements of the problem correspond to the action of a nonconservative load and are similar to the first and second statements, respectively. They use the linearized equations of equilibrium and motion constructed earlier in a consistent version on the basis of a Timoshenko type model and allowing one to reveal all classical and nonclassical shell buckling modes.  相似文献   

13.
由于杆管间库仑摩擦的影响,定向井有杆泵抽油系统动态参数预测模型是一个非线性的偏微分方程,求解复杂。鉴于此,提出了一种新的分析方法。该方法以定向井有杆抽油系统中的抽油杆柱作为研究对象,根据三次样条插值模拟得到的定向井的井眼轨迹,利用静力有限元法计算出了油管对抽油杆柱的支反力,进而得出了杆柱与油管之间的库仑摩擦力;给出了杆柱单元的受力分析;建立了有限元形式的杆柱系统动力学方程并利用状态空间法对其进行了数值求解,获得了悬点示功图。文末给出了两口油井的预测实例,并将预测结果与实测结果进行了对比。对比结果表明本文所提的分析方法是正确和有效的。  相似文献   

14.
包海军  胡宇达 《力学季刊》2020,41(4):728-738
在考虑热因素及旋转运动条件下,针对金属-陶瓷功能梯度圆板的固有振动问题进行研究.给出随温度变化且材料组分沿厚度方向按幂律分布的材料物性参数,依据热弹性理论得到圆板的能量关系式.基于哈密顿原理建立旋转金属-陶瓷功能梯度圆板热弹性动力学方程.采用伽辽金法得到边界约束下圆板的自由振动方程,确定了静挠度及固有振动频率.基于数值计算,得到系统固有频率值随体积分数指数、转速和温度等参量的变化曲线,讨论了静挠度变化规律及动力系统的奇点稳定性问题.结果表明,固有频率随体积分数指数、材料表面温度以及转速的增加而减小.  相似文献   

15.
Based on Timoshenko beam theory, the dynamic response of an elastically connected multiple-beam system is investigated. The identical prismatic beams are assumed to be parallel and connected by a finite number of springs. Assuming n parallel Timoshenko beams, the motion of the system is described by a coupled set of 2n partial differential equations. The method involves a change of variables and modal analysis to decouple and to solve the governing differential equations, respectively. A case study is solved in detail to demonstrate the methodology and several plots of the midpoint deflections of beams are given and investigated for different values of moving load velocity and the stiffness of elastic connections. From the numerical results it is observed that the maximum deflection of the multiple Timoshenko beam system is always smaller than one of a single beam.  相似文献   

16.
黄欣奕  李莹  李鸿晶 《力学季刊》2021,42(2):351-359
为了提高基于高阶格式的结构动力响应微分求积分析方法的计算效率,发展了一种求解动力方程的快速算法.利用微分求积原理将结构动力方程转化为标准Sylvester方程的形式,通过对系数矩阵进行矩阵分解,进而将动力响应Sylvester方程化为一系列标准线性方程组,采用相关成熟算法求解这些线性方程组后即可获得结构动力时程响应的全部解答.结构动力响应微分求积分析方法为高阶数值方法,一步计算可以获得多个时点处的动力响应.基于本文快速算法,不必直接对矩阵方程进行求解.数值算例表明,本文快速算法能够准确地计算出结构动力响应,具有数值精度高、收敛性好的优点.  相似文献   

17.
作大范围空间运动柔性梁的刚-柔耦合动力学   总被引:1,自引:4,他引:1  
刘锦阳  李彬  洪嘉振 《力学学报》2006,38(2):276-282
研究带中心刚体的作大范围空间运动梁的刚-柔耦合动力学问题.从精确的应变-位移关系式出发,在动力学变分方程中,考虑了横截面转动的惯性力偶和与扭转变形有关的弹性力的虚功率,用速度变分原理建立了考虑几何非线性的空间梁的刚-柔耦合动力学方程,用有限元法进行离散.通过对空间梁系统的数值仿真研究扭转变形和截面转动惯量对系统动力学性态的影响.  相似文献   

18.
In this work we compare equations of motion using the so-called inertial quasi-velocities. As a result of these velocities we obtain two first-order decoupled equations of motion instead of one second-order differential equation of motion. The methods presented here, solve in a way, the problem of nonlinear dynamic decoupling. The first and the second method result from diagonalized Lagrangian robot dynamics (Jain and Rodriguez, IEEE Trans Robot Autom 11:571–584, 1995) and are known as normalized and unnormalized quasi-velocities. The third method described by Junkins and Schaub (J Astronaut Sci 45:279–295, 1997) offers eigenfactor quasi-coordinate velocities formulation for multibody dynamics. As a consequence of using transformation given by Loduha and Ravani (Trans ASME J Appl Mech 62:216–222, 1995) we obtain decoupled equations of motion in terms of modified generalized velocity components. Here we limit all these methods to serial manipulators. The novelty of this paper consists in physical interpretation of the quasi-velocities and discussion concerning equations of motion, the kinetic energy shaping, relationship between each of them and properties useful for simulation and control purposes. Also forward dynamics algorithms and their computational complexity in terms of new velocities are given. Simulation results illustrate the theoretical investigations. We conclude that all methods offer interesting possibilities for dynamic simulation and future control investigations.  相似文献   

19.
含孔曲板弹性波散射与动应力分析   总被引:2,自引:0,他引:2  
胡超  李凤明  黄文虎 《力学学报》2003,35(2):240-245
基于敞口浅柱壳弹性波动方程及摄动方法,对无限大含孔曲板弹性波散射及动应力问题进行了分析研究,将经典薄板弯曲波动问题的分析解作为本问题的主项,给出了在稳态波下孔洞附近散射波的零阶渐近解。建立了求解含孔曲板弹性波散射与动应力问题的边界积分方程法,利用积分方程法可获得问题的近似分析解。并给出了无限大曲板圆孔附近动应力集中系数的数值结果,且对计算结果进行了分析与讨论。  相似文献   

20.
Non-linear vibrations of axially moving beam with time-dependent tension are investigated in this paper. The beam material is modelled as three-parameter Zener element. The Galerkin method and the fourth order Runge-Kutta method are used to solve the governing non-linear partial-differential equation. The effects of the transport speed, the tension perturbation amplitude and the internal damping on the dynamic behaviour of the system are numerically investigated. The Poincare maps and bifurcation diagrams are constructed to classify the vibrations. For small values of the transport speed and the amplitude of periodic perturbation the system is asymptotically stable with its response tending to zero. With the increase of parameters one can observe the coexistence of attractors. Regular and chaotic motion occur when the internal damping increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号