首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transfer of F- ion assisted by an organometallic complex cation tetraphenylantimony (TPhSb+) across the polarized nitrobenzene / water (NB / W) interface has been studied by means of ion-transfer voltammetry. A well-defined voltammetric wave was observed within the potential window at the NB / W interface when tetraphenylantimony tetrakis(4-chlorophenyl) borate and F- ion were present in NB and W, respectively. The voltammogram can be interpreted as being due to the reversible transfer of F- ion assisted by the formation of the TPhSbF complex through the coordination of F- to Sb atom in NB. The formal formation constant of TPhSbF in NB has been determined to be 10(1.95 +/- 0.2 M(-1). No voltammetric wave due to the TPhSb(+)-assisted transfer of other anions such as Cl-, Br, I-, NO3-, CH3COO- and H2PO4(-) ions has been observed within the potential window.  相似文献   

2.
The ion transfer of creatinine (CRE) at a polarized nitrobenzene (NB)/water (W) interface has been studied. When the pH of the W phase is in the range of 1.2 to 4.0, a well‐defined voltammetric wave is observed for a simple transfer of CRE+ (protonated form) at the NB/W interface. This transfer reaction has been applied to develop an amperometric method for the determination of CRE in urine. In this system, the NB/W interface is covered with a dialysis membrane to prevent possible interference from urine proteins. The concentration of CRE in a urine control has successfully been determined.  相似文献   

3.
A new electrochemical method for studying the electron transfer (ET) at the oil (O)/water (W) interface (or the liquid/liquid) interface has been devised, in which the O- and W-phases are separated by an electron conductor (EC; e.g. Pt). For the EC separating O–W (ECSOW) system, the ET across the EC phase can be observed voltammetrically in a similar manner to the O/W interface, however, no ion-transfer (IT) process can be taken place. Although the ECSOW system is thermodynamically equivalent to the corresponding O/W interface, they may be different from a kinetic viewpoint. In practice, the cyclic voltammograms obtained with the nitrobenzene NB/W interface and the ECSOW system in the presence of ferrocene in NB and hexacyanoferrate in W have shown quite different features, when the concentrations of both redox species are lower. The voltammograms for the NB/W interface have strongly supported the IT mechanism which involves an interfacial transfer of ferricenium ion. Also, the ECSOW system has been shown to be promising for clarification of complicated charge-transfer processes involving biological compounds such as l-ascorbic acid.  相似文献   

4.
The luminescence spectroscopy study and the determination of the photophysical parameters for the M-M'-bonded rhodium meso-tetraphenylporphyrin-tin(2,3,7,13,17,18-hexamethyl-8,12-diethylcorrole) complex, (TPP)Rh-Sn(Me6Et2Cor) 1, was investigated. The emission bands as well as the lifetimes (tau(e)) and the quantum yields (Phi(e); at 77 K using 2MeTHF as solvent) were compared with those of (TPP)RhI 2 (TPP = tetraphenylporphyrin) and (Me6Et2Cor)SnCl 3 (Me6Et2Cor = 2,3,7,13,17,18-hexamethyl-8,12-diethylcorrole) which are the two chemical precursors of 1. The energy diagram has been established from the absorption, fluorescence and phosphorescence spectra. The Rh(TPP) and Sn(Me6Et2Cor) chromophores are the energy donor (D) and acceptor (A), respectively. The total absence of fluorescence in 1 (while fluorescence is observed in the tin derivative 3) indicates efficient excited state deactivation, presumably due to heavy atom effect and intramolecular energy transfer (ET). The large decreases in tau(P) and Phi(P) of the Rh(TPP) chromophore going from 2 to 1 indicate a significant intramolecular ET in the triplet states of 1 with an estimated rate ranging between 10(6) and 10(8) s(-1). Based on the comparison of transfer rates with other related dyads that exhibit similar D-A separations and no M-M' bond, and for which slower through space ET processes (10(2)-10(3) s(-1)) operate, a through M-M' bond ET has been unambiguously assigned to 1.  相似文献   

5.
Two dialkyl peroxides, devised as kinetic probes for the heterogeneous electron transfer (ET), are studied using heterogeneous and homogeneous electrochemical techniques. The peroxides react by concerted dissociative ET reduction of the O-O bond. Under heterogeneous conditions, the only products isolated are the corresponding alcohols from a two-electron reduction as has been observed with other dialkyl peroxides studied to date. However, under homogeneous conditions, a generated alkoxyl radical undergoes a rapid beta-scission fragmentation in competition with the second ET resulting in formation of acetone and a benzyl radical. With knowledge of the rate constant for fragmentation and accounting for the diffuse double layer at the electrode interface, the heterogeneous ET rate constant to the alkoxyl radicals is estimated to be 1500 cm s(-1). The heterogeneous and homogeneous ET kinetics of the O-O bond cleavage have also been measured and examined as a function of the driving force for ET, deltaG(ET), using dissociative electron transfer theory. From both sets of kinetics, besides the evaluation of thermochemical parameters, it is demonstrated that the heterogeneous and homogeneous reduction of the O-O bond appears to be non-adiabatic.  相似文献   

6.
The kinetics of the transfer of a series of hydrophilic monovalent anions across the water/nitrobenzene (W/NB) interface has been studied by means of thin organic film-modified electrodes in combination with electrochemical impedance spectroscopy and square-wave voltammetry. The studied ions are Cl-, Br-, I-, ClO4-, NO3-, SCN-, and CH3COO-. The electrode assembly comprises a graphite electrode (GE) covered with a thin NB film containing a neutral strongly hydrophobic redox probe (decamethylferrocene or lutetium bis(tetra-tert-butylphthalocyaninato)) and an organic supporting electrolyte. The modified electrode is immersed in an aqueous solution containing a supporting electrolyte and transferring ions, and used in a conventional three-electrode configuration. Upon oxidation of the redox probe, the overall electrochemical process proceeds as an electron-ion charge-transfer reaction coupling the electron transfer at the GE/NB interface and compensates ion transfer across the W/NB interface. The rate of the ion transfer across the W/NB interface is the limiting step in the kinetics of the overall coupled electron-ion transfer reaction. Moreover, the transferring ion that is initially present in the aqueous phase only at a concentration lower than the redox probe, controls the mass transfer regime in the overall reaction. A rate equation describing the kinetics of the ion transfer that is valid for the conditions at thin organic film-modified electrodes is derived. Kinetic data measured with two electrochemical techniques are in very good agreement.  相似文献   

7.
<正>The oxidation of hydroquinone(QH_2) was investigated for the first time at liquid/liquid(L/L) interface by scanning electrochemical microscopy(SECM).In this study,electron transfer(ET) from QH_2 in aqueous to ferrocene(Fc) in nitrobenzene (NB) was probed.The apparent heterogeneous rate constants for ET reactions were obtained by fitting the experimental approach curves to the theoretical values.The results showed that the rate constants for oxidation reaction of QH_2 were sensitive to the changes of the driving force,which increased as the driving force increased.In addition,factors that would affect ET of QH_2 were studied.Experimental results indicated ion situation around QH_2 molecule could change the magnitude of the rate constants because the capability of oxidation of QH_2 would be affected by them.  相似文献   

8.
The ion-transfer reaction of local anesthetics at an organic solvent/water interface has been studied using cyclic voltammetry (CV) with a stationary nitrobenzene (NB)/water (W) interface. Procaine and seven other local anesthetics gave reversible or quasi-reversible voltammograms at the NB/W interface in the pH range between 0.9 and 9.6. These drugs are present in aqueous solution in either neutral or ionic form, or both forms. The half-wave potential, as determined by the midpoint potential in CV, vs. pH curves, were determined and analyzed to determine the partition coefficients of both neutral and ionic forms of the drugs between NB and W. The partition coefficients of the ionic forms were derived from their formal potential of transfer at an NB/W interface. The dissociation constants of ionic forms of the drugs in NB were also deduced. A high correlation between the pharmacological activity and the partition coefficient of the ionic form of amide-linked local anesthetics has been shown.  相似文献   

9.
Scanning electrochemical microscopy was used to probe the influence of a driving force on the heterogeneous electron transfer (ET) processes at the externally polarized water/1,2-dichloroethane interface. Being a part of the driving force, the Galvani potential difference at the interface, Deltaowphi, can be quantitatively controlled in a wide range, allowing the precise measurements of the rate constants of the ET reactions. Two opposite systems were chosen in this work. One was 5,10,15,20-tetraphenyl 21H,23H-porphyrin zinc (ZnPor, O)/Fe(CN)64- (W), and the other was TCNQ (O)/Fe(CN)63- (W). For both systems studied, the relations between the rate constant and the Deltaowphi were of parabolic shape; that is, the rate constants increased initially with the Deltaowphi until reaching a maximum and then decreased steadily as the Deltaowphi increased further. This is in accordance with the prediction of the Marcus theory. To our knowledge, this is the first report that the Marcus inverted region can be observed electrochemically at an unmodified liquid/liquid interface with only one redox couple at each phase. The effect of the concentrations of the organic supporting electrolyte has also been discussed in detail.  相似文献   

10.
The electron transfer (ET) reaction between bis(cyclopentadienyl)iron(II) ([Fe(II)(C(5)H(5))2]) in 1,2-dichloroethane (1,2-DCE) and hexacyanoferrate redox couple ([Fe(II/III)(CN)6](4-/3-)) in water (W) at the interface has been studied by using cyclic voltammetry. The voltammetric results can be explained well by a theoretical equation for the so-called IT-mechanism, in which a homogeneous ET reaction between [Fe(C(5)H(5))2] (partially distributed from 1,2-DCE) and [Fe(CN)6](3-) takes place in the W phase and the resultant [Fe(C(5)H(5))2]+ ion is responsible for current passage across the interface. The forward rate constant of the homogeneous ET reaction, [Fe(C(5)H(5))2] + [Fe(CN)6](3-) = [Fe(C(5)H(5))2]+ + [Fe(CN)6](4-) in W phase, k(f)(IT), was determined to be (2.9 +/- 2.2)x 10(10) M(-1) s(-1), which was in good agreement with k(f)(IT) = (3.2 +/- 2.0)x 10(10) M(-1) s(-1), which had been determined by using normal-pulse voltammetry.  相似文献   

11.
A novel experimental methodology for depositing and voltammetric study of Ag nanoparticles at the water-nitrobenzene (W-NB) interface is proposed by means of thin-film electrodes. The electrode assembly consists of a graphite electrode modified with a thin NB film containing decamethylferrocene (DMFC) as a redox probe. In contact with an aqueous electrolyte containing Ag(+) ions, a heterogeneous electron-transfer reaction between DMFC((NB)) and Ag(+)((W)) takes place to form DMFC(+)((NB)) and Ag deposit at the W-NB interface. Based on this interfacial reaction, two different deposition strategies have been applied. In the uncontrolled potential deposition protocol, the electrode is immersed into an AgNO(3) aqueous solution for a certain period under open circuit conditions. Following the deposition step, the Ag-modified thin-film electrode is transferred into an aqueous electrolyte free of Ag(+) ions and voltammetrically inspected. In the second protocol the deposition was carried out under controlled potential conditions, i.e., in an aqueous electrolyte solution containing Ag(+) ions by permanent cycling of the electrode potential. In this procedure, DMFC((NB)) is electrochemically regenerated at the electrode surface, hence enabling continuation and voltammetric control of the Ag deposition. Hence, the overall electrochemical process can be regarded as an electrochemical reduction of Ag(+)((W)) at the W-NB interface, where the redox couple DMFC(+)/DMFC acts as a mediator for shuttling electrons from the electrode to the W-NB interface. Ag-particles deposited at the W-NB interface affect the ion transfer across the interface, which provides the basis for voltammetric inspection of the metal deposit at the liquid-liquid interface with thin-film electrodes. Voltammetric properties of thin-film electrodes are particularly sensitive to the deposition procedure, reflecting differences in the properties of the Ag deposit. Moreover, this methodology is particularly suited to inspect catalytic activities of metal particles deposited at the liquid-liquid interface toward heterogeneous electron-transfer reactions occurring at the at the liquid-liquid interface.  相似文献   

12.
Electrochemically driven adsorption and partition of a series of poly(diallyldialkylammonium) ions (PDADAA(+): alkyl = methyl, ethyl, propyl, and butyl) at the nitrobenzene (NB)|water (W) interface have been studied using voltammetry and electrocapillary measurements. When the phase-boundary potential, Δφ, that is, the inner potential of the W phase referred to that of the NB phase, is negative, poly(diallyldimethylammonium) (PDADMA(+)) shows little surface activity. The scanning of Δφ in the positive direction induces, first, the adsorption of PDADMA(+) at the interface and, then, the desorption of adsorbed PDADMA(+) ions into the NB phase, followed by the diffusion-limited transfer of PDADMA(+) from W to NB. The elongation of the dialkyl chains gives the stronger surface activity of PDADAA(+) even when Δφ < 0. The PDADAA(+) polyions studied are only slightly more hydrophilic than the corresponding monomers. However, the polycationic character of PDADAA(+) renders the adsorption, desorption, and ion transfer strongly dependent on Δφ and gives rise to unusual, M-shaped electrocapillary curves. The interplay of adsorption-desorption and ion transfer of PDADAA(+) ions induces the electrochemical instability of the interface and the emulsion formation on the NB side of the interface.  相似文献   

13.
The photosensitized DNA damage caused by dihydroxoP(V)tetraphenylporphyrin (P(V)TPP), a cationic water-soluble porphyrin, was examined. The study of near-infrared emission measurements demonstrated the photosensitized singlet oxygen ((1)O(2)) generation by P(V)TPP (quantum yield: 0.28 in ethanol). The fluorescence quenching of P(V)TPP by DNA showed the electron transfer (ET) from nucleobases to photoexcited P(V)TPP. These results have shown that P(V)TPP has ability to damage DNA through dual mechanisms, (1)O(2) generation and ET. Under aerobic conditions, P(V)TPP photosensitized damage was more severe for single-stranded DNA compared to its double-stranded counterpart. Photoexcited P(V)TPP damaged every guanine residue in single-stranded DNA. HPLC measurements confirmed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidized product of 2'-deoxyguanosine, and showed that the yield of 8-oxodGuo in single-stranded DNA is larger than that in double-stranded DNA. The guanine-specific DNA damage and the enhancement in single-stranded DNA suggest that the (1)O(2) generation mainly contributes to the mechanism of DNA photodamage by P(V)TPP. Absorption spectrum measurements suggested the interaction between P(V)TPP and DNA. This interaction is expected to enhance the (1)O(2)-mediated DNA damage since the lifetime of (1)O(2) is very short. On the other hand, for double-stranded DNA, photosensitized damage at consecutive guanines was much less pronounced. Because the consecutive guanines act as a hole trap, this DNA-damaging pattern suggests the partial involvement of photoinduced ET. However, DNA damage by ET was not a main mechanism, possibly due to the reverse ET. In conclusion, P(V)TPP induces guanine specific photooxidation mainly via (1)O(2) generation. The interaction with DNA and the energy level of the photoexcited porphyrin may be advantageous for (1)O(2)-mediated DNA damage rather than ET mechanism.  相似文献   

14.
The transfer on phenylpropanolamine ion, PPAH+, has been studied at the Interface between Two Immiscible Solutions (ITIES). The polarizable potential range was determined by cyclic voltammetry at the interface between an aqueous solution of lithium chloride (LiCl) and a nitrobenzene (NB) solution of electrolyte tetrabutylammonium tetraphenylborate (TBATPB). The half‐wave potential of ion transfer for phenylpropanolamine accross the water|NB interface was found 465.3 mV. The peak separation, the diffusion coefficient, and the standard ion transfer potential of PPAH+ were observed to be 59.1 mV, 1.7 × 10?6 cm2/s, and 104.6 mV, respectively. The temperature of experiment was kept constantly at 25 ± 1 °C using water flow thermostate.  相似文献   

15.
The effect of pH on the kinetics of the bioelectrocatalytic reduction of H(2)O(2) catalysed by horseradish peroxidase (HRP) has been studied at -50 mV vs. Agmid R:AgCl on HRP-modified Au electrodes placed in a wall-jet flow-through electrochemical cell. Native HRP (nHRP) and a nonglycosylated recombinant form containing a six-histidine tag at the C-terminus, C(His)rHRP, produced by genetic engineering of nonglycosylated recombinant HRP using an E. coli expression system, have been used for adsorptive modification of Au electrodes. A favourable adsorption of C(His)rHRP on pre-oxidized Au from a protein solution at pH 6.0 provided a high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct (mediator-less) electron transfer (ET) between Au and the active site of HRP. The heterogeneous ET rate constant, k(s), calculated from experimental data on direct ET, on mediated ET in the presence of catechol as well as from microbalance data, increased more than 30 times when changing from nHRP to C(His)rHRP. For both forms of HRP, the increasing efficiency of bioelectrocatalysis with increasing [H(3)O(+)] was observed. The values of the apparent k(s) between C(His)rHRP and Au changed from a value of 12+/-2 s(-1) in PBS at pH 8.0 to a value of 434+/-62 s(-1) at pH 6.0; a similar k(s)-pH dependence was also observed for nHRP, providing the possibility to consider the reaction mechanism involving the participation of a proton in the rate-determining step of the charge transfer.  相似文献   

16.
Tetraoctylammonium cation forms a room-temperature molten salt (RTMS) with 2,4,6-trinitrophenolate anion. The RTMS is immiscible with water (W) and forms a stable RTMS/W interface. It has been shown that the RTMS/W interface can be electrochemically polarized. A well-defined voltammetric wave due to the transfer of thiocyanate ion across the RTMS/W interface was observed within the potential window. This is the first example of a polarized RTMS/W interface.  相似文献   

17.
New approaches have been developed for measuring the rates of electron transfer (ET) across self-assembled molecular monolayers by scanning electrochemical microscopy (SECM). The developed models can be used to independently measure the rates of ET mediated by monolayer-attached redox moieties and direct ET through the film as well as the rate of a bimolecular ET reaction between the attached and dissolved redox species. By using a high concentration of redox mediator in solution, very fast heterogeneous (10(8) s(-1)) and bimolecular (10(11) mol(-1) cm(3) s(-1)) ET rate constants can be measured. The ET rate constants measured for ferrocene/alkanethiol on gold were in agreement with previously published data. The rates of bimolecular heterogeneous electron transfer between the monolayer-bound ferrocene and water-soluble redox species were measured. SECM was also used to measure the rate of ET through nonelectroactive alkanethiol molecules between substrate gold electrodes and a redox probe (Ru(NH(3))(6)(3+)) freely diffusing in the solution, yielding a tunneling decay constant, beta, of 1.0 per methylene group.  相似文献   

18.
The electron transfer (ET) properties of a series of closely related cobalt porphyrins, [2,3,7,8,12,13,17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]cobalt, CoF(28)TPP, [2,3,7,8,12,13,17,18-octafluoro-5,10,15,20-tetraphenyl)porphyrinato]cobalt, CoF(8)TPP, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]cobalt, CoF(20)TPP, and [5,10,15,20-tetraphenylporphyrinato]cobalt, CoTPP, were investigated by cyclic voltammetry, cyclic voltammetric digital simulation, in situ UV-vis and IR spectroelectrochemistry, kinetic ET studies, bulk electrolysis, (19)F NMR spectroscopy, X-ray crystallography, and molecular modeling. In benzonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF(6)) as supporting electrolyte, the ET rate constants for the Co(2+/3+) redox couples were found to be strongly substituent dependent; the heterogeneous ET rate constant (k(el)) varied by a factor of 10(4), and the ET self-exchange rate constants (k(ex)) varied over 7 orders of magnitude for the compounds studied. The remaining observed ring oxidation and metal and ring reduction events exhibited nearly identical k(el) values for all compounds. UV-vis and IR spectroelectrochemistry, bulk electrolysis, and (19)F NMR spectroscopic studies support attribution of different ET rates to widely varying inner sphere reorganization energies (lambda(i)) for these closely related compounds. Structural and semiempirical (PM3) studies indicate that the divergent kinetic behavior of CoTPP, CoF(8)TPP, CoF(20)TPP, and CoF(28)TPP first oxidations arises mainly from large nuclear reorganization energies primarily associated with core contraction and dilation. Taken together, these studies provide rational design principles for modulating ET rate constants in cobalt porphyrins over an even larger range and provide strategies for similar manipulation of ET rates in other porphyrin-based systems: substituents that lower C-C, C-N, and N-M vibrational frequencies or minimize porphyrin orbital overlap with the metal-centered orbital undergoing a change in electron population will increase k(ET). The heme ruffling apparent in electron transfer proteins such as cytochrome c is interpreted as nature's exploitation of this design strategy.  相似文献   

19.
Solutions of monodisperse monolayer-protected clusters (MPCs) of gold can be used as multivalent redox mediators in electrochemical experiments due to their quantized double-layer charging properties. We demonstrate their use in scanning electrochemical microscopy (SECM) experiments wherein the species of interest (up to 2-electron reduction or 4-electron oxidation from the native charge-state of the MPCs) is generated at the tip electrode, providing a simple means to adjust the driving force of the electron transfer (ET). Approach curves to perfectly insulating (Teflon) and conducting (Pt) substrates are obtained. Subsequently, heterogeneous ET between MPCs in 1,2-dichloroethane and an aqueous redox couple (Ce(IV), Fe(CN)63-/4-, Ru(NH3)63+, and Ru(CN)64-) is probed with both feedback and potentiometric mode of SECM operation. Depending on the charge-state of the MPCs, they can accept/donate charge heterogeneously at the liquid-liquid interface. However, this reaction is very slow in contrast to ET involving MPCs at the metal-electrolyte interface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号