首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Poly(ethylene glycol)‐poly(lactide) (PEG‐PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star‐shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  相似文献   


2.
Three‐dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2‐hydroxyethyl and 2‐aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle‐like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N‐γ‐maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using 125I radiolabeled SIKVAVS. Both RGDS‐ and SIKVAVS‐modified poly(2‐hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  相似文献   


3.
Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2‐ethyl‐2‐oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non‐coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi‐angle dynamic light scattering, asymmetrical flow field‐flow fractionation, gel electrophoresis, and liquid chromatography‐mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non‐specific cellular uptake, particularly by macrophage‐like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles.

  相似文献   


4.
Adhesion and proliferation of cells are often suppressed in rigid hydrogels as gel stiffness induces mechanical stress to embedded cells. Herein, the composite hydrogel systems to facilitate high cellular activities are described, while maintaining relatively high gel stiffness. This unusual property is obtained by harmonizing gelatin‐poly(ethylene glycol)‐tyramine (GPT, semisynthetic polymer) and gelatin‐hydroxyphenyl propionic acid conjugates (GH, natural polymer) into hydrogels. A minimum GH concentration of 50% is necessary for cells to be proliferative. GPT is utilized to improve biological stability (>1 week) and gelation time (<20 s) of the hydrogels. These results suggest that deficiency in cellular activity driven by gel stiffness could be overcome by finely tuning the material properties in the microenvironments.

  相似文献   


5.
Conventional cancer treatments such as chemotherapy, radiotherapy, or combination of these two result in side effects, which lower the quality of life of the patients. To overcome problems with these methods, altering the drug properties by conjugating them to carrier polymers has emerged. Such polymeric carriers also hold the potential to make tumor cells more sensitive to radiation therapy. Herein, poly(p‐phenylene) (PPP) polymer with poly(ethylene glycol) (PEG) chains and primary amino groups (PPP‐NH2g‐PEG) is synthesized and conjugated with anticancer drug Doxorubicin (DOX). pH dependent drug release experiments are performed at pH 5.3 and pH 7.4, respectively. Cell viability studies on human cervix adenocarcinoma cells show that lower doses of DOX inhibit cell proliferation when conjugated with nontoxic doses of PPP‐NH2g‐PEG polymer. Additionally, PPP‐NH2g‐PEG/Cys/DOX bioconjugate significantly increases radiosensitive properties of DOX. It is possible to use lower doses of DOX when conjugated to PPP‐NH2g‐PEG in combination with radiotherapy.

  相似文献   


6.
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride‐ester) (PAE) backbone via melt‐condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin‐based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo‐first order kinetic experiments on model compounds, butyric anhydride and 3‐butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin‐based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods.

  相似文献   


7.
A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4‐aminobutylguanidine (agmatine, AGM) and 4‐aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA‐ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA‐ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA‐ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier.

  相似文献   


8.
Poly (ethylene glycol) (PEG) based hydrogels have been widely used in many biomedical applications such as regenerative medicine due to their good biocompatibility and negligible immunogenicity. However, bioactivation of PEG hydrogels, such as conjugation of bioactive biomolecules, is usually necessary for cell‐related applications. Such biofunctionalization of PEG hydrogels generally involves complicated and time‐consuming bioconjugation procedures. Herein, we describe the facile preparation of bioactive nanocomposite PEG hydrogel crosslinked by the novel multifunctional nanocrosslinkers, namely polydopamine‐coated layered double hydroxides (PD‐LDHs). The catechol‐rich PD‐LDH nanosheets not only act as effective nanocrosslinkers reinforcing the mechanical strength of the hydrogel, but also afford the hydrogels with robust bioactivity and bioadhesion via the cortical‐mediated couplings. The obtained nanocomposite PEG hydrogels with the multifunctional PD‐LDH crosslinking domains show tunable mechanical properties, self‐healing ability, and bioadhesion to biological tissues. Furthermore, these hydrogels also promote the sequestration of proteins and support the osteogenic differentiation of human mesenchymal stem cells without any further bio‐functionalization. Such facile preparation of bioactive and bioadhesive PEG hydrogels have rarely been achieved and may open up a new avenue for the design of nanocomposite PEG hydrogels for biomedical applications.

  相似文献   


9.
Poly(2‐alkenyl‐2‐oxazoline)s are promising functional polymers for a variety of biomedical applications, such as drug delivery systems, peptide conjugates, or gene delivery. In this study, poly(2‐isopropenyl‐2‐oxazoline) (PIPOx) is prepared through free‐radical polymerization initiated with azobisisobutyronitrile. Reactive 2‐oxazoline units in the side chain support an addition reaction with different compounds containing a carboxylic group, which facilitates the preparation of polymers labeled with two different fluorescent dyes. The cytotoxicities of 2‐oxazoline monomers, PIPOx, and fluorescently labeled PIPOx are evaluated in vitro using an 3‐(4,5‐Dimethyldiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and ex vivo using a cell proliferation assay with adenosine triphosphate bioluminescence. The cell uptake of labeled PIPOx is used to determine the colocalization of PIPOx with cell organelles that are part of the endocytic pathway. For the first time, it is shown that poly(2‐isopropenyl‐2‐oxazoline) is a biocompatible material and is suitable for biomedical applications; further, its immunomodulative properties are evaluated.

  相似文献   


10.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


11.
The aim of this study is to design a polymeric nanogel system with tailorable degradation behavior. To this end, hydroxyethyl methacrylate‐oligoglycolates‐derivatized poly(hydroxypropyl methacrylamide) (pHPMAm‐Gly‐HEMA) and hydroxyethyl methacrylamide‐oligoglycolates‐derivatized poly(hydroxyethyl methacrylamide) (pHEMAm‐Gly‐HEMAm) are synthesized and characterized. pHEMAm‐Gly‐HEMAm shows faster hydrolysis rates of both carbonate and glycolate esters than the same ester groups of pHPMAm‐Gly‐HEMA. pHEMAm‐Gly‐HEMAm nanogels have tailorable degradation kinetics from 24 h to more than 4 d by varying their crosslink densities. It is shown that the release of a loaded macromolecular model drug is controlled by degradation of nanogels. The nanogels show similar cytocompatibility as PLGA nanoparticles and are therefore considered to be attractive systems for drug delivery.

  相似文献   


12.
The design of drug delivery systems capable of efficiently delivering poorly soluble drugs to target sites still remains a major challenge. Such materials require several different functionalities; typically, these materials should be biodegradable and nontoxic, nonimmunogenic, responsive to their environment, and soluble in aqueous solution while retaining the ability to solubilize hydrophobic drugs. Here, a polypeptide‐polymer hybrid of elastin‐like polypeptides (ELPs) and poly(2‐oxazoline)s (POx) is reported. This paper describes the chemical synthesis, physical characteristics, and drug loading potential of these novel hybrid macromolecules. A novel method is introduced for terminal functionalization of POx with protected maleimide moieties. Following recovery of the maleimide group via a retro Diels–Alder reaction, the consecutive Michael addition of thiol‐functionalized ELPs yields the desired protein‐polymer conjugate. These conjugates form nanoparticles in aqueous solution capable of solubilizing the anti‐cancer drug paclitaxel with up to 8 wt% loading.

  相似文献   


13.
This study reports the structural transition of electrospun poly(ε‐caprolactone) (PCL)/poly[(propylmethacryl‐heptaisobutyl‐polyhedral oligomeric silsesquioxane)‐co‐(methyl meth­acrylate)] (POSS‐MMA) blends, from PCL‐rich fibers, to bicontinuous PCL core/POSS‐MMA shell fibers, to POSS‐MMA‐rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS‐MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS‐MMA blend ratios. X‐ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS‐MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS‐copolymer‐based systems, which hold great potential for a broad spectrum of biomedical applications.

  相似文献   


14.
This study presents a custom‐made in situ gelling polymeric precursor for cell encapsulation. Composed of poly((2‐hydroxyethyl)methacrylate‐co‐(3‐aminopropyl)methacrylamide) (P(HEMA‐co‐APM) mother backbone and RGD‐mimicking poly(amidoamine) (PAA) moiteis, the comb‐like structured polymeric precursor is tailored to gather the advantages of the two families of synthetic polymers, i.e., the good mechanical integrity of PHEMA‐based polymers and the biocompatibility and biodegradability of PAAs. The role of P(HEMA‐co‐APM) in the regulation of the chemico‐physical properties of P(HEMA‐co‐APM)/PAA hydrogels is thoroughly investigated. On the basis of obtained results, namely the capability of maintaining vital NIH3T3 cell line in vitro for 2 d in a 3D cell culture, the in vivo biocompatibility in murine model for 16 d, and the ability of finely tuning mechanical properties and degradation kinetics, it can be assessed that P(HEMA‐co‐APM)/PAAs offer a cost‐effective valid alternative to the so far studied natural polymer‐based systems for cell encapsulation.

  相似文献   


15.
To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle‐in‐microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan‐graft‐poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self‐assembled into nanoscale micelle‐like core–shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin‐6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP‐2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP‐2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects.

  相似文献   


16.
There is an actual need of advanced materials for the emerging field of bioelectronics. One commonly used material is the conducting polymer poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) due to its general use in organic electronics. However, depending on the application in bioelectronics, PEDOT:PSS is not fully biocompatible due to the high acidity of the residual sulfonate protons of PSS. In this paper, the synthesis and biocompatibility properties of new poly(3,4‐ethylenedioxythiophene):GlycosAminoGlycan (PEDOT:GAG) aqueous dispersions and its resulting films are shown. Thus, negatively charged GAGs as an alternative to PSS are presented. Three different commercially available GAGs, hyaluronic acid, heparin, and chondroitin sulfate are used. Indeed, PEDOT:GAGs dispersions are prepared through an oxidative chemical polymerization in water. Biocompatibility assays of the PEDOT:GAGs coatings are performed using SH‐SY5Y and CCF‐STTG1 cell lines and with ATP and Ca2+. Results show full biocompatibility and a pronounced anti‐inflammatory effect. This last characteristic becomes crucial if implanted in the body. These materials can be used for in vivo applications, as transistor or electrode for electrical recording and for all the possible situations when there is contact between electronic circuits and living tissues.

  相似文献   


17.
Development of bioadhesive formulations for tissue fixation remains a challenge. The major drawbacks of available bioadhesives are low adhesion strength, toxic byproducts, and complexity of application onto affected tissues. In order to address these problems, this study has developed a hydrogel bioadhesive system based on poly amido amine (PAMAM) dendrimer, grafted (conjugated) with UV‐sensitive, 4‐[3‐(trifluoromethyl)‐3H‐diazirin‐3‐yl] benzyl bromide (PAMAM‐g‐diazirine). This particular diazirine molecule can be grafted to the surface amine groups of PAMAM in a one‐pot synthesis. Diazirine functionalities are carbene precursors that form covalent crosslinks with hydrated tissues after low‐power UV activation without necessity of free‐radical initiators. The rheological properties and adhesion strength to ex vivo tissues are highly controllable depending on diazirine grafting, hydrogel concentration, and UV dose intensity fitting variety types of tissues. Covalent bonds at the tissue/bioadhesive interface provide robust adhesive and mechanical strength in a highly hydrated environment. The free flowing hydrogel conversion to elastic adhesive after UV activation allows intimate contact with the ex vivo swine tissue surfaces with low in vitro cytotoxicity observed, making it a promising bioadhesive formulation toward clinical applications.

  相似文献   


18.
A hydrophobic/amino functionalized derivative of hyaluronic acid (HA‐EDA‐C18) has been processed by salt leaching technique as porous scaffold without need of chemical crosslinking. Aim of this work is to demonstrate the improved versatility of HA‐EDA‐C18 in terms of processing and biological functionalization. In particular, the chemical procedure to tether thiol bearing RGD peptide has been described. Moreover, the possibility to load and to control the release of slightly water soluble effectors has been demonstrated by using dexamethasone. First, the swelling and degradation profiles of the scaffolds have been investigated, then the evaluation of metabolic activity of bovine chondrocytes, the histological analysis, and microscope observations has been performed to evaluate cellular adhesion and proliferation as well as the production of collagen type II.

  相似文献   


19.
Development of artificial tissues providing the proper geometrical, mechanical, and environmental cues for cells is highly coveted in the field of tissue engineering. Recently, microfabrication strategies in combination with other chemistries have been utilized to capture the architectural complexity of intricate organs, such as the liver, in in vitro platforms. Here it is shown that a biofunctionalized poly (ethylene glycol) (PEG) hydrogel scaffold, fabricated using a sphere‐template, facilitates hepatic sheet formation that follows the microscale patterns of the scaffold surface. The design takes advantage of the excellent diffusion properties of porous, uniform 3D hydrogel platforms, and the enhanced‐cell–extracellular matrix interaction with the display of conjugated collagen type I, which in turn elicits favorable Huh‐7.5 response. Collectively, the experimental findings and corresponding simulations demonstrate the importance of biofunctionalized porous scaffolds and indicate that the microscaffold shows promise in liver tissue engineering applications and provides distinct advantages over current cell sheet and hepatocyte spheroid technologies.

  相似文献   


20.
Complementary nucleobase‐functionalized polymeric micelles, a combination of adenine‐thymine (A‐U) base pairs and a blend of hydrophilic–hydrophobic polymer pairs, can be used to construct 3D supramolecular polymer networks; these micelles exhibit excellent self‐assembly ability in aqueous solution, rapid pH‐responsiveness, high drug loading capacity, and triggerable drug release. In this study, a multi‐uracil functionalized poly(ε‐caprolactone) (U‐PCL) and adenine end‐capped difunctional oligomeric poly(ethylene glycol) (BA‐PEG) are successfully developed and show high affinity and specific recognition in solution owing to dynamically reversible A‐U‐induced formation of physical cross‐links. The U‐PCL/BA‐PEG blend system produces supramolecular micelles that can be readily adjusted to provide the desired critical micellization concentration, particle size, and stability. Importantly, in vitro release studies show that doxorubicin (DOX)‐loaded micelles exhibit excellent DOX‐encapsulated stability under physiological conditions. When the pH value of the solution is reduced from 7.4 to 5.0, DOX‐loaded micelles can be rapidly triggered to release encapsulated DOX, suggesting these polymeric micelles represent promising candidate pH‐responsive nanocarriers for controlled‐release drug delivery and pharmaceutical applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号