首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, postfunctionalization and bioapplication of a π‐conjugated polymer named 4‐[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl]aniline (DTP‐aryl‐NH2) are reported, which is successfully synthesized via electropolymerization onto the glassy carbon electrode. Folic acid (FA) is used to modify the amino functional polymer via N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride/N‐hydroxysuccinimide chemistry for the further steps. The selective adhesion of folate receptor positive cells on the surface is followed by the electrochemical methods. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize stepwise modification of the electroactive surface. After optimization studies such as scan rate during the polymer deposition, FA amount for the efficient surface targeting, incubation time with the cells etc., analytical characterization is carried out. The surface morphologies at each step are imaged by using fluorescence microscopy.

  相似文献   


2.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


3.
Complementary nucleobase‐functionalized polymeric micelles, a combination of adenine‐thymine (A‐U) base pairs and a blend of hydrophilic–hydrophobic polymer pairs, can be used to construct 3D supramolecular polymer networks; these micelles exhibit excellent self‐assembly ability in aqueous solution, rapid pH‐responsiveness, high drug loading capacity, and triggerable drug release. In this study, a multi‐uracil functionalized poly(ε‐caprolactone) (U‐PCL) and adenine end‐capped difunctional oligomeric poly(ethylene glycol) (BA‐PEG) are successfully developed and show high affinity and specific recognition in solution owing to dynamically reversible A‐U‐induced formation of physical cross‐links. The U‐PCL/BA‐PEG blend system produces supramolecular micelles that can be readily adjusted to provide the desired critical micellization concentration, particle size, and stability. Importantly, in vitro release studies show that doxorubicin (DOX)‐loaded micelles exhibit excellent DOX‐encapsulated stability under physiological conditions. When the pH value of the solution is reduced from 7.4 to 5.0, DOX‐loaded micelles can be rapidly triggered to release encapsulated DOX, suggesting these polymeric micelles represent promising candidate pH‐responsive nanocarriers for controlled‐release drug delivery and pharmaceutical applications.

  相似文献   


4.
Adhesion and proliferation of cells are often suppressed in rigid hydrogels as gel stiffness induces mechanical stress to embedded cells. Herein, the composite hydrogel systems to facilitate high cellular activities are described, while maintaining relatively high gel stiffness. This unusual property is obtained by harmonizing gelatin‐poly(ethylene glycol)‐tyramine (GPT, semisynthetic polymer) and gelatin‐hydroxyphenyl propionic acid conjugates (GH, natural polymer) into hydrogels. A minimum GH concentration of 50% is necessary for cells to be proliferative. GPT is utilized to improve biological stability (>1 week) and gelation time (<20 s) of the hydrogels. These results suggest that deficiency in cellular activity driven by gel stiffness could be overcome by finely tuning the material properties in the microenvironments.

  相似文献   


5.
Poly(ethylene glycol)‐poly(lactide) (PEG‐PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star‐shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  相似文献   


6.
For efficient treatment of multidrug‐resistance (MDR) breast cancer cells, design of biocompatible mixed micelles with diverse functional moieties and superior stability is needed for targeted delivery of chemical drugs. In this study, polypropylene glycol (PPG)‐grafted hyaluronic acid (HA) copolymers (PPG‐g‐HA) are used to make mixed micelles with different amounts of pluronic L61, named PPG‐g‐HA/L61 micelles. Optimized PPG‐g‐HA/L61 micelles with 3% pluronic L61 exhibit great stability in aqueous solution, superior biocompatibility, and significantly increased uptake into MCF‐7 MDR cells via HA–CD44‐specific interactions when compared to free doxorubicin (DOX) and other types of micelles. In addition, DOX in PPG‐g‐HA/L61 micelles with 3% pluronic L61 have toxicity in MCF‐7 MDR cells but significantly lower toxicity in fibroblast L929 cells compared to free DOX. Thus, PPG‐g‐HA/L61 micelles with 3% pluronic L61 content can be a promising nanocarrier to overcome MDR and release DOX in a hyaluronidase‐sensitive manner without any toxicity to normal cells.

  相似文献   


7.
Poly (ethylene glycol) (PEG) based hydrogels have been widely used in many biomedical applications such as regenerative medicine due to their good biocompatibility and negligible immunogenicity. However, bioactivation of PEG hydrogels, such as conjugation of bioactive biomolecules, is usually necessary for cell‐related applications. Such biofunctionalization of PEG hydrogels generally involves complicated and time‐consuming bioconjugation procedures. Herein, we describe the facile preparation of bioactive nanocomposite PEG hydrogel crosslinked by the novel multifunctional nanocrosslinkers, namely polydopamine‐coated layered double hydroxides (PD‐LDHs). The catechol‐rich PD‐LDH nanosheets not only act as effective nanocrosslinkers reinforcing the mechanical strength of the hydrogel, but also afford the hydrogels with robust bioactivity and bioadhesion via the cortical‐mediated couplings. The obtained nanocomposite PEG hydrogels with the multifunctional PD‐LDH crosslinking domains show tunable mechanical properties, self‐healing ability, and bioadhesion to biological tissues. Furthermore, these hydrogels also promote the sequestration of proteins and support the osteogenic differentiation of human mesenchymal stem cells without any further bio‐functionalization. Such facile preparation of bioactive and bioadhesive PEG hydrogels have rarely been achieved and may open up a new avenue for the design of nanocomposite PEG hydrogels for biomedical applications.

  相似文献   


8.
A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4‐aminobutylguanidine (agmatine, AGM) and 4‐aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA‐ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA‐ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA‐ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier.

  相似文献   


9.
To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle‐in‐microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan‐graft‐poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self‐assembled into nanoscale micelle‐like core–shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin‐6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP‐2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP‐2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects.

  相似文献   


10.
A hydrophobic/amino functionalized derivative of hyaluronic acid (HA‐EDA‐C18) has been processed by salt leaching technique as porous scaffold without need of chemical crosslinking. Aim of this work is to demonstrate the improved versatility of HA‐EDA‐C18 in terms of processing and biological functionalization. In particular, the chemical procedure to tether thiol bearing RGD peptide has been described. Moreover, the possibility to load and to control the release of slightly water soluble effectors has been demonstrated by using dexamethasone. First, the swelling and degradation profiles of the scaffolds have been investigated, then the evaluation of metabolic activity of bovine chondrocytes, the histological analysis, and microscope observations has been performed to evaluate cellular adhesion and proliferation as well as the production of collagen type II.

  相似文献   


11.
Phospholipid‐detergent conjugates are proposed as fusogenic carriers for gene delivery. Eleven compounds are prepared and their properties are investigated. The ability of the conjugates to promote fusion with a negatively charged model membrane is determined. Their DNA delivery efficiency and cytotoxicity are assessed in vitro. Lipoplexes are administered in the mouse lung, and transgene expression Indeterminate inflammatory activity are measured. The results show that conjugation of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) with C12E4 produces a carrier that can efficiently deliver DNA to cells, with negligible ­associated toxicity. Fusogenicity of the conjugates shows good correlation with in vitro transfection efficiency and crucially depends on the length of the polyether moiety of the detergent. Finally, DOPC‐C12E4 reveals highly potent for in vivo DNA delivery and favorably compares to GL67A, the current golden standard for gene delivery to the airway, opening the way for further promising developments.

  相似文献   


12.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


13.
Polydopamine‐coated porous microsphere (PPM) is investigated as a simple and versatile immobilization strategy for immune‐stimulating biomolecules to enhance delivery efficiency and immune‐stimulating effects such as cytokine induction in macrophages. The PPMs, with diameters of about 2 μm, exhibit simultaneous and efficient incorporation of biomolecules (nucleotides and proteins), which is comparable to that achieved using microspheres carrying biomolecules internally by virtue of their porous structure. Ovalbumin‐conjugated PPMs are internalized into macrophages efficiently and selectively via the phagocytic pathway, without any noticeable toxicity. Internalized CpG oligodeoxynucleotide (ODN)‐conjugated PPMs (PPM‐CpG) greatly enhance the induction of selected cytokines (TNF‐α and IL‐6) in RAW 264.7 cells compared to that by the soluble CpG ODN and ionic complexes. Therefore, PPMs generated in this study may serve as effective carriers of immune‐stimulating biomolecules such as diverse toll‐like receptor agonists.

  相似文献   


14.
Three‐dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2‐hydroxyethyl and 2‐aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle‐like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N‐γ‐maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using 125I radiolabeled SIKVAVS. Both RGDS‐ and SIKVAVS‐modified poly(2‐hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  相似文献   


15.
Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2‐ethyl‐2‐oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non‐coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi‐angle dynamic light scattering, asymmetrical flow field‐flow fractionation, gel electrophoresis, and liquid chromatography‐mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non‐specific cellular uptake, particularly by macrophage‐like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles.

  相似文献   


16.
Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71D3)‐based micelles effectively encapsulate the doxorubicin (DOX) with a high drug‐loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296D1) vesicles. DOX released from the resultant P71D3/DOX micelles is approximately 1.3‐fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71D3/DOX micelles also enhance drug potency in breast cancer MDA‐MB‐231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy‐dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  相似文献   


17.
The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long‐term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug‐resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex.

  相似文献   


18.
This article proposes a method to quantify the polymerization kinetics of ethylene and α‐olefins with commercial TiCl4/MgCl2 Ziegler–Natta catalysts. The method determines the leading apparent polymerization kinetic constants for each active site in a Ziegler–Natta catalyst by simultaneously fitting the instantaneous polymerization rate, cumulative polymer yield, and polymer molecular weight distribution measured at different times during a series of semi‐batch polymerization experiments. This approach quantifies the behavior of olefin polymerization with multisite catalysts using the least number of adjustable parameters needed to consistently model polymerization kinetics and polymer microstructural data.

  相似文献   


19.
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride‐ester) (PAE) backbone via melt‐condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin‐based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo‐first order kinetic experiments on model compounds, butyric anhydride and 3‐butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin‐based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods.

  相似文献   


20.
The actinomycetes, Gram‐positive filamentous bacteria, are the most prolific source of natural occurring antibiotics. At an industrial level, antibiotics from actinomycete strains are produced by means of submerged fermentations, where one of the major factors negatively affecting bioproductivity is the pellet‐shaped biomass growth. The immobilization of microorganisms on properly chosen supports prevents cell–cell aggregation resulting in improving the biosynthetic capability. Thus, novel porous biopolymer‐based devices are developed by combining melt mixing and particulate leaching. In particular, polycaprolactone (PCL), polyethylene glycol (PEG), and sodium chloride (NaCl) with different grain sizes are used to prepare PCL/PEG/NaCl blends in the melt. These blends are then leached to obtain PCL‐based porous membranes that are used as solid support for the growth of Streptomyces coelicolor, a model streptomycete used to produce various antibiotics including the blue colored actinorhodin (ACT). Thereafter, the effect of the devices' characteristics on the bacterial growth and on the production ACT is evaluated. The results showed that ACT production is strongly dependent on the pore size distribution of the device. Moreover, membranes with pores ranging from 90 to 110 μm are able to offer a potential improvement in volumetric productivity of ACT if compared to conventional submerged liquid culture.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号