首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be permeable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally, the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are dependent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and material constants.  相似文献   

2.
This article provides a theoretical treatment of the dynamic interaction between a matrix crack and an arbitrarily located circular inhomogeneity with a distinct interphase under antiplane loading. The matrix⧹inhomogeneity interphase is characterized by a linear spring model. The theoretical formulations governing the steady state problem are based upon the use of integral transform techniques, Bessel function expansions and a Pseudo-incident wave technique. The closed form expression for the resulting stress intensity factor at the matrix crack is obtained by solving the appropriate singular integral equations using Chebyshev polynomials. Typical examples are provided to show the effect of the location of the inhomogeneity, the material combination and the interface property upon the dynamic stress intensity factor of the matrix crack.  相似文献   

3.
The anti-plane dynamic problem of a functionally graded piezoelectric plane containing a hole–crack system is treated by a non-hypersingular traction-based boundary integral equation method. The material parameters vary exponentially in the same manner in an arbitrary direction. The system is loaded by an incident SH-type wave, and impermeable boundary conditions are assumed. Using a frequency-dependent fundamental solution of the wave equation, the boundary value problem is transformed into a system of integro-differential equations along the boundary of the hole and on the crack line. Its numerical solution yields the dynamic stress intensity factors and stress concentration factors. A parametric study reveals their dependence on the hole–crack scenario and its geometry, characteristics of the dynamic load and magnitude and direction of material inhomogeneity.  相似文献   

4.
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors.  相似文献   

5.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

6.
运用弹性力学的复势方法,研究了纵向剪切下增强相/夹杂内螺型位错偶极子与含共焦钝裂纹椭圆夹杂的干涉效应,得到了该问题复势函数的封闭形式解答,由此推导出了夹杂区域的应力场、作用在螺型位错偶极子中心的像力和像力偶矩以及裂纹尖端应力强度因子级数形式解。并分析了位错偶极子倾角 、钝裂纹尺寸和材料常数对位错像力、像力偶矩以及应力强度因子的影响。数值计算结果表明:位错像力、像力偶矩以及应力强度因子均随位错偶极子倾角做周期变化;夹杂内部的椭圆钝裂纹明显增强了硬基体对位错的排斥,减弱了软基体对位错的吸引,且对于硬夹杂,位错出现了一个不稳定平衡位置,该平衡位置随钝裂纹曲率的增大不断向界面靠近;变化 值将出现改变位错偶极子对应力强度因子作用方向的临界值。  相似文献   

7.
The interaction between an elliptical crack and a spherical inhomogeneity embedded in a three-dimensional solid subject to uniaxial tension is investigated. Both the inhomogeneity and the solid are isotropic but have different elastic moduli. The Eshelby's equivalent inclusion method is applied together with the principle of superposition. An approximate solution for the stress intensity factor is obtained by an approach that expands the distance between the center of the crack and inhomogeneity in series. The local stress field can be increased or decreased depending on the relative modulus of the spherical inhomogeneity and matrix. If the inhomogeneity modulus is larger than that of the matrix, a reduction in the stress intensity factor prevails. Displayed numerically are results to exhibit the influence of inhomogeneity and its distance to the crack.  相似文献   

8.
An oblique edge crack in an anisotropic material under antiplane shear loadings is investigated. The antiplane problems are formulated based on a linear transformation method. An anisotropic solid containing an edge crack subjected to concentrated forces is first considered. The stress intensity factor for the edge crack with concentrated forces is obtained from the solution of the transformed edge crack in an isotropic material which is solved by using conformal mapping technique and complex function theory. The solution of the edge crack under concentrated loads is used to construct the stress intensity factor for the oblique edge crack in the anisotropic material subjected to antiplane distributed loads. Some numerical computations are carried out to calculate the stress intensity factors for the edge crack in inclined orthotropic materials subjected to point forces as well as distributed tractions.  相似文献   

9.
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies. The project supported by the National Natural Science Foundation of China (19872002) and Climbing Foundation of Northern Jiaotong University  相似文献   

10.
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared.  相似文献   

11.
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored. This work was supported by the National Natural Science Foundation of China (No.19772064) and by the project of CAS KJ 951-1-20  相似文献   

12.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

13.
横观各向同性三维热弹性力学通解及其势理论法   总被引:3,自引:0,他引:3  
陈伟球  丁皓江 《力学学报》2003,35(5):578-583
通过引入两个位移函数,对用位移表达的运动平衡方程作了简化.利用算子理论,严格地导出了横观各向同性非耦合热弹性动力学问题的通解.对于静力学问题,通解的形式可进一步简化成用4个准调和函数来表示.具体考察了横观各向同性体内平面裂纹上下表面有对称分布温度作用的问题,推广了势理论方法,导出了一个积分方程和一个微分-积分方程.针对币状裂纹表面受均布温度作用情形,给出了具体的解。  相似文献   

14.
The contact interaction of the faces of a penny-shaped crack in a three-dimensional space is studied for the case of normal incidence of a harmonic tension–compression wave. The problem is solved by the method of boundary integral equations. The dependence of the mode I stress intensity factor on the wave number is studied. The solution is compared with the results obtained for a penny-shaped crack when the contact interaction is neglected.  相似文献   

15.
Surface contact interaction of a plane elliptical crack under normally incident tension–compression wave is solved by the method of boundary integral equations. The contact forces and the displacement discontinuity of the crack edges are examined. The dependence of the mode I stress intensity factor on the wave number is studied. The solution is compared with the results obtained for an elliptical crack without allowance for crack edges contact interaction.  相似文献   

16.
In this paper, the interactions between an elliptic hole and an arbitrary distributed small crack in plane piezoelectric medium, which are often happened in engineering problems, are discussed. The Green’s functions in a piezoelectric plate with an elliptic hole for a generalized line dislocation and a generalized line force are presented. The small crack is represented by unknown continuous distributed dislocations. By considering traction free conditions on the surface of the small crack, the problem is then reduced to a group of singular integral equations which are solved by using a special numerical technique. Accuracy of the present method is confirmed by comparing the numerical results with those in literatures for PZT-4 when the elliptic hole is degenerated into a crack. The generalized stress intensity factors of cracks and the generalized stress on the edge of the elliptic hole are shown graphically. It is shown that the small crack may have shielding or amplifying effects on the main elliptic hole or crack, which depends on the location and orientation of the small crack. The hole near a crack can significantly reduce the stress intensity factor of the crack. The direction of the electric field is important to shielding effect.  相似文献   

17.
THE PERIODIC CRACK PROBLEM IN BONDED PIEZOELECTRIC MATERIALS   总被引:3,自引:0,他引:3  
The problem of a periodic array of parallel cracks in a homogeneous piezoelectric strip bonded to a functionally graded piezoelectric material is investigated for inhomogeneous continuum.It is assumed that the material inhomogeneity is represented as the spatial varia- tion of the shear modulus in the form of an exponential function along the direction of cracks. The mixed boundary value problem is reduced to a singular integral equation by applying the Fourier transform,and the singular integral equation is solved numerically by using the Gauss- Chebyshev integration technique.Numerical results are obtained to illustrate the variations of the stress intensity factors as a function of the crack periodicity for different values of the material inhomogeneity.  相似文献   

18.
The heat dipole consists of a heat source and a heat sink. The problem of an interfacial crack of a composite containing a circular inclusion under a heat dipole is investigated by using the analytical extension technique, the generalized Liouville theo-rem, and the Muskhelishvili boundary value theory. Temperature and stress fields are formulated. The effects of the temperature field and the inhomogeneity on the interracial fracture are analyzed. As a numerical illustration, the thermal stress intensity factors of the interfacial crack are presented for various material combinations and different po-sitions of the heat dipole. The characteristics of the interfacial crack depend on the elasticity, the thermal property of the composite, and the condition of the dipole.  相似文献   

19.
The heat dipole consists of a heat source and a heat sink. The problem of an interracial crack of a composite containing a circular inclusion under a heat dipole is investigated by using the analytical extension technique, the generalized Liouville theorem, and the Muskhelishvili boundary value theory. Temperature and stress fields are formulated. The effects of the temperature field and the inhomogeneity on the interracial fracture axe analyzed. As a numerical illustration, the thermal stress intensity factors of the interfacial crack are presented for various material combinations and different positions of the heat dipole. The characteristics of the interfacial crack depend on the elasticity, the thermal property of the composite, and the condition of the dipole.  相似文献   

20.
In this paper, a two dimensional functionally graded material (2D-FGM) under an anti-plane load with an internal crack is considered. The crack is oriented in an arbitrary direction. The material properties are assumed to vary exponentially in two planar directions. The problem is analyzed and solved by two different methods namely Fourier integral transforms with singular integral equation technique, and then by the finite element method. The effects of crack orientation, material non-homogeneity, and other parameters on the value of stress intensity factor (SIF) are studied. Finally, the obtained results for Mode III stress intensity factor of different methods are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号