首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u i , electric displacement D i and volume fraction ρ I of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction ρ I of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch. The project supported by the National Natural Science Foundation of China (10572138).  相似文献   

2.
Complex, non-linear, irreversible, hysteretic behavior of polycrystalline ferroelectric materials under a combined electro-mechanical loading is a result of domain wall motion, causing simultaneous expansion and contraction of unlike domains, grain sub-divisions that have distinct spontaneous polarization and strain. In this paper, a 3-dimensional finite element method is used to simulate such a polycrystalline ferroelectric under electrical and mechanical loading. A constitutive law due to Huber et al. [1999. A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663-1697] for switching by domain wall motion in multidomain ferroelectric single crystals is employed in our model to represent each grain, and the finite element method is used to solve the governing conditions of mechanical equilibrium and Gauss's law. The results provide the average behavior for the polycrystalline ceramic. We compare the outcomes predicted by this model with the available experimental data for various electromechanical loading conditions. The qualitative features of ferroelectric switching are predicted well, including hysteresis and butterfly loops, the effect on them of mechanical compression, and the response of the polycrystal to non-proportional electrical loading.  相似文献   

3.
A thermodynamically consistent phenomenological model for the simulation of the macroscopic behavior of ferroelectric polycrystalline ceramics is presented. It is based on the choice of microscopically motivated internal state variables, which describe the texture and the polarization state of the polycrystal. Saturation states are defined for the internal state variables. The linear material behavior is modelled by a transversely isotropic piezoelectric constitutive law, where the anisotropy is history dependent. For non-linear irreversible processes, a switching function and associated evolution rules are applied, satisfying the principle of maximum ferroelectric dissipation. Saturation is modelled by the use of energy-barrier functions in the electric enthalpy density function. Numerical examples demonstrate the capability of the proposed model, to predict the typical experimental results.  相似文献   

4.
An isoparametric 3D electromechanical hexahedral finite element integrating a 3D phenomenological ferroelectric and ferroelastic constitutive law for domain switching effects is proposed. The model presents two internal variables which are the ferroelectric polarization (related to the electric field) and the ferroelastic strain (related to the mechanical stress). An implicit integration technique of the constitutive equations based on the return-mapping algorithm is developed. The mechanical strain tensor and the electric field vector are expressed in a curvilinear coordinate system in order to handle the transverse isotropy behavior of ferroelectric ceramics. The hexahedral finite element is implemented into the commercial finite element code Abaqus® via the subroutine user element. Some linear (piezoelectric) and non linear (ferroelectric and ferroelastic) benchmarks are considered as validation tests.  相似文献   

5.
A finite element model of switching in polycrystalline ferroelastic ceramics is developed. It is assumed that a crystallite switches if the reduction in mechanically driven potential energy of the system exceeds a critical value per unit volume of switching material. Stress induced (i.e. ferroelastic) switching is a change of permanent strain in characteristic crystallographic directions. Martensitic twinning is one example, but the strain response of ferroelectric materials has the same characteristics. The model is suitable for representing ferroelastic systems such as shape memory alloys and as a preliminary model for ferroelectric/ferroelastic materials such as perovskite piezoelectrics. In the simulations, each crystallite is represented by a finite element and the crystallographic principal direction for each crystallite is assigned randomly. Different critical values for the energy barrier to switching are selected to simulate stress vs strain hysteresis loops of a ceramic lead lanthanum zirconate titanate (PLZT) at room temperature. The measured stress versus strain curves of polycrystalline ceramics designated PZT-A and PZT-B are also reproduced by the model.  相似文献   

6.
In this article, we introduce a one-dimensional continuum model for ferroelectric ceramics within a thermodynamical framework. The model consists of a free energy potential, a switching criterion, and a kinetic relation. The free energy potential is given as a function of polarization, strain, and two internal variables – remanent polarization and remanent strain. A polarization switching is described by evolutions of the two internal variables and evolution laws called kinetics are proposed based on the second law of thermodynamics. The predictions of the model are compared with experimental observations. It is suggested to model unpoled domains in the fully poled state for improved model responses.  相似文献   

7.
This paper presents a time dependent polarization constitutive model suitable for predicting nonlinear polarization and electro-mechanical strain responses of ferroelectric materials subject to various histories of electric fields. The constitutive model is derived based on a single integral form with nonlinear (electric field and temperature dependent) integrand. The total polarization consists of the time-dependent and residual components. The residual component of the polarization is due to polarization switching in the ferroelectric materials. We use an ‘internal clock’ concept to incorporate the effect of electric field on the rate of polarization. The corresponding strain response is determined through the use of third order piezoelectric constant and/or fourth order electrostrictive constant that vary with polarization stage. It is assumed that in absence of polarization, both piezoelectric and electrostrictive constants are zero. To incorporate the effect of temperature on the overall polarization behavior all material parameters in the constitutive model are allowed to change with the ambient temperature. We present numerical studies on the effect of time, temperature, and electric field on the response of ferroelectric material followed by verification of the constitutive model. Experimental data on lead zirconate titanate (PZT) materials available in the literature are used to verify the model.  相似文献   

8.
万强  陈常青  沈亚鹏 《力学学报》2007,39(6):767-773
对压力作用下沿[001]晶向极化的Pb(Mg弛豫型铁电单晶;极化旋转(相变);黏塑性模型;本构;细观力学国家自然科学基金,教育部全国优秀博士学位论文作者专项基金2006-11-06对压力作用下沿[001]晶向极化的Pb(Mg1/3Nb2/3)O3-0.32PbTiO3(PMN0.32PT)弛豫型铁电单晶的应力应变行为进行了实验研究,实验结果表明铁电单晶〈001〉晶向的应力应变行为和铁电多晶有本质的不同,是传统的电畴翻转机理所难以解释的,所提出的极化旋转(相变)模型合理地解释了实验中观察到的现象;基于提出的极化旋转(相变)模型,采用细观力学方法建立了铁电单晶的细观本构模型.在模型中采用黏塑性公式描述铁电单晶可能的8个相变系统的相变行为.为了验证模型的可靠性,用该模型模拟了铁电单晶〈001〉晶向的应力应变实验曲线.计算表明,该模型能较好地模拟铁电单晶〈001〉晶向的相变行为.  相似文献   

9.
This paper is concerned with a macroscopic constitutive law for domain switching effects, which occur in ferroelectric ceramics. The three-dimensional model is thermodynamically consistent and is determined by two scalar valued functions: the Helmholtz free energy and a switching surface. In a kinematic hardening process the movement of the center of the switching surface is controlled by internal variables. In common usage, the remanent polarization and the irreversible strain are employed as internal variables. The novel aspect of the present work is to introduce an irreversible electric field, which serves instead of the remanent polarization as internal variable. The irreversible electric field has only theoretical meaning, but it makes the formulation very suitable for a finite element implementation, where displacements and the electric potential are the nodal degrees of freedom. The paper presents an appropriate implementation into a hexahedral finite brick element. The uni-axial constitutive model successfully reproduces the ferroelastic and the ferroelectric hysteresis as well as the butterfly hysteresis for ferroelectric ceramics. Furthermore it accounts for the mechanical depolarization effect, which occurs if the polarized ferroelectric ceramic is subjected to a compression stress.  相似文献   

10.
The role of mechanical constraint upon the switching response of a ferroelectric thin film memory capacitor is explored. The memory capacitor is represented by a two dimensional ferroelectric island whose non-linear behaviour is modelled by a crystal plasticity constitutive law within the finite element method. The switching response of the device, in terms of remnant charge storage, is determined as a function of geometry and constraint. Various types of constraint on the ferroelectric capacitor are considered, including the presence of a silicon dioxide passivation layer, a silicon substrate and metallic electrodes. The effect of the relative resistance to 90 degree switching and 180 degree switching is also explored in a tetragonal ferroelectric device. Throughout the study, the finite element calculations are compared with the behaviour of a material element subjected to various degrees of mechanical constraint.  相似文献   

11.
In this paper, the composite nonlinear feedback control method is considered for robust tracking and model following of uncertain linear systems. The control law guarantees that the tracking error decreases asymptotically to zero in the presence of time varying uncertain parameters and disturbances. For performance improvement of the dynamical system, the proposed robust tracking controller consists of linear and nonlinear feedback parts without any switching element. The linear feedback law is designed to allow the closed loop system have a small damping ratio and a quick response while the nonlinear feedback law increases the damping ratio of the system as the system output approaches the output of the reference model. A new collection of different nonlinear functions used in the control law are offered to improve the reference tracking performance of the system. The proposed robust tracking controller improves the transient performance and steady state accuracy simultaneously. Finally, the simulations are provided to verify the theoretical results.  相似文献   

12.
A simple phenomenological model is developed for describing the macroscopic constitutive response of ferroelectric materials based on consideration of the fact that domain switching is a progressive evolution process with loading. The volume fraction of domain switching is taken as an internal variable, which is derived from the domain nucleation theory. The proposed theory can simulate the dielectric hysteresis, reversed butterfly hysteresis, nonlinear strain-stress hysteresis, as well as electric displacement-stress relation of ferroelectric materials. Its comparison with experimental results and two other theoretical models reveals that the model presented can well predict the nonlinear hysteresis of ferroelectrics under electrical or mechanical loading.  相似文献   

13.
In this paper, a general form for multi-axial constitutive laws for ferroelectric ceramics is constructed. The foundation of the theory is an assumed form for the Helmholtz free energy of the material. Switching surfaces and associated flow rules are postulated in a modified stress and electric field space such that a positive dissipation rate during switching is guaranteed. The resulting tangent moduli relating increments of stress and electric field to increments of strain and electric displacement are symmetric since changes in the linear elastic, dielectric and piezoelectric properties of the material are included in the switching surface. Finally, parameters of the model are determined for two uncoupled cases, namely non-remanent straining ferroelectrics and purely ferroelastic switching, and then for the fully coupled ferroelectric case.  相似文献   

14.
铁电陶瓷宏观单轴力电行为的双面模型   总被引:1,自引:0,他引:1  
铁电陶瓷以其优越的力电耦合性作为新型的智能材料使用. 提出基于弹塑性双面理论的宏观铁电本构模型. 根据铁电陶瓷内部电畴在外电场和机械场作用下的微观运动,在宏观上除引入材料的畴变面外,还首次引入饱和面,并考虑以畴变面与饱和面之间的广义距离来表征铁电陶瓷的非线性行为. 数值计算结果与实验数据的比较表明所提出的初步理论可适当地反映力电加载下铁电陶瓷的宏观非线性行为.  相似文献   

15.
为提高聚合物熔体剪切黏度模型的描述精度,提出了一个基于二次Bezier 曲线的黏度模型. 模型采用分段函数描述,在对数坐标系中,低剪切速率时的牛顿区和高剪切速率时的幂律区采用线性函数,介于二者之间的过渡区采用二次Bezier 曲线. 通过牛顿区和幂律区的直线延长线构造Bezier 曲线的控制多边形,从而保证三段曲线的光滑过渡. 模型可以明确给出任意温度下低剪切速率时牛顿区的结束点,以及高剪切速率时幂律区的开始点. 拟合算例表明,所提出模型的拟合精度明显高于Cross-Arrhenius 黏度模型.   相似文献   

16.
刘峰 《固体力学学报》2010,31(2):193-197
大量的实验已经证实电畴翻转是铁电材料非线性和迟滞性本构曲线的根本原因。研究者已经对铁电陶瓷的微观电畴翻转行为进行了大量详细的研究。针对描述电畴成核的物理实验结果和经典的成核率实验数据,为了建立电畴翻转体积分数的演化方程提出了反应微观电畴翻转的成核率模型。针对铁电试样电畴随机分布的情况,应用该模型对铁电陶瓷的非线性本构行为进行了研究。理论结果与实验数据的比较表明,模型能较好的描述铁电材料的非线性本构行为。同时模型所揭示的微观反转的物理本质可进一步的指导宏观唯象模型的改进。  相似文献   

17.
A two-scale micromechanics model is developed in this paper to analyze domain switching in ferroelectric ceramics, using a probabilistic domain switching criterion based on energetic analysis. The microstructure of ferroelectric ceramics at two distinct length scales, domains and grains, has been carefully analyzed. The interaction at domain level is accounted for by energy minimization theory, while the fluctuation at grain level is analyzed using ellipsoidal two-point correlation function. The model has been implemented by Monte Carlo method, and applied to simulate the electric poling and mechanical depoling of Pb(ZrxTi1-x)O3 (PZT) ceramics across morphotropic phase boundary (MPB). The drastically different switching characteristics of PZT ceramics across MPB has been captured, and good agreement with experiments has been observed. The effects of the transformation strains and spontaneous polarizations are highlighted, confirming the proposition of Li et al. [2005. Domain switching in polycrystalline ferroelectric ceramics. Nature Materials 4, 776–781] that the strain compatibility plays a dominant role in domain switching in ferroelectric ceramics.  相似文献   

18.
大量的实验已经证实电畴翻转是铁电材料非线性和迟滞性本构曲线的根本原因.根据这些描述电畴运动的物理实验结果,提出了成核率模型来模拟铁电材料的非线性本构行为.进一步由模型建立了基于微观电畴运动的电畴翻转体积分数演化方程.应用该模型得到的理论计算结果与实验数据的比较表明,模型能够描述铁电材料的非线性本构行为.同时模型所揭示的微观电畴成核的演化行为可进一步的指导宏观唯象模型的建立与改进.  相似文献   

19.
In this paper, we compute the constitutive behavior of a ferroelectric ceramic by a plane strain finite element model, where each element represents a single grain in the polycrystal. The properties of a grain are described by the microscopic model for switching in multidomain single crystals of ferroelectric materials presented by Huber et al. [J. Mech. Phys. Solids 47 (1999) 1663]. The poling behavior of the polycrystal is obtained by employing the finite element formulation for electromechanical boundary value problems developed by Landis [Int. J. Numer. Meth. Eng. 55 (2002) 613]. In particular, we address the influence of the single grain properties and the interaction between grains, respectively.  相似文献   

20.
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics.The project supported by the National Natural Science Foundation of China (10025209, 10132010 and 90208002), the Research Grants of the Council of the Hong Kong Special Administrative Region, China (HKU7086/02E) and the Key Grant Project of the Chinese Ministry of Education (0306)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号