首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property.  相似文献   

2.
We introduce a notion of fibred coarse embedding into Hilbert space for metric spaces, which is a generalization of Gromov?s notion of coarse embedding into Hilbert space. It turns out that a large class of expander graphs admit such an embedding. We show that the maximal coarse Baum–Connes conjecture holds for metric spaces with bounded geometry which admit a fibred coarse embedding into Hilbert space.  相似文献   

3.
We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.  相似文献   

4.
We analyze two‐level overlapping Schwarz domain decomposition methods for vector‐valued piecewise linear finite element discretizations of the PDE system of linear elasticity. The focus of our study lies in the application to compressible, particle‐reinforced composites in 3D with large jumps in their material coefficients. We present coefficient‐explicit bounds for the condition number of the two‐level additive Schwarz preconditioned linear system. Thereby, we do not require that the coefficients are resolved by the coarse mesh. The bounds show a dependence of the condition number on the energy of the coarse basis functions, the coarse mesh, and the overlap parameters, as well as the coefficient variation. Similar estimates have been developed for scalar elliptic PDEs by Graham et al. 1 The coarse spaces to which they apply here are assumed to contain the rigid body modes and can be considered as generalizations of the space of piecewise linear vector‐valued functions on a coarse triangulation. The developed estimates provide a concept for the construction of coarse spaces, which can lead to preconditioners that are robust with respect to high contrasts in Young's modulus and the Poisson ratio of the underlying composite. To confirm the sharpness of the theoretical findings, we present numerical results in 3D using vector‐valued linear, multiscale finite element and energy‐minimizing coarse spaces. The theory is not restricted to the isotropic (Lamé) case, extends to the full‐tensor case, and allows applications to multiphase materials with anisotropic constituents in two and three spatial dimensions. However, the bounds will depend on the ratio of largest to smallest eigenvalue of the elasticity tensor.  相似文献   

5.
For second-order elliptic partial differential equations large discontinuities in the coefficients yield ill-conditioned stiffness matrices. The convergence of domain decomposition methods (DDM) can be improved by incorporating (numerically computed) local eigenvectors into the coarse space. Different adaptive coarse spaces for DDM have been constructed and used successfully. For two-level Schwarz, FETI-1 and BDD methods, adaptive coarse spaces with a rigorous theoretical basis are known for 2D and 3D. Although successfully in use for almost a decade, a theory for adaptive coarse spaces for FETI-DP and BDDC was lacking. While the problem was recently settled for 2D, the estimate for the 3D adaptive algorithm required improved coarse spaces. We give an brief overview of the literature, i. e., the different known approaches, and show numerical results for a specific adaptive FETI-DP method in 3D, where the condition number bound could only recently be proven. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We show that the coarse cohomology, defined by J. ROE for complete metric spaces, coincides with the sheaf cohomology of the constant sheaf IR for a certain Grothendieck topology. Therefore many properties of coarse cohomology are easy consequences of general principles.  相似文献   

7.
We study the coarse Baum–Connes conjecture for product spaces and product groups. We show that a product of CAT(0) groups, polycyclic groups and relatively hyperbolic groups which satisfy some assumptions on peripheral subgroups, satisfies the coarse Baum–Connes conjecture. For this purpose, we construct and analyze an appropriate compactification and its boundary, “corona”, of a product of proper metric spaces.  相似文献   

8.
1.引言本文的工作主要是讨论非定常的热传导一对流问题的向后一步的Euler全离散化的非线性Galerkin混合元解的存在性及其误差估计.该工作是对山中的同一问题研究的第二部分.在第一部分[1],我们已经讨论了此问题的半离散化的情形.由于所研究的目标都是非定常的热传导一对流问题,其背景是相同的,在此将不重复了,请参考[1].本文的安排如下,52先回顾非定常的热传导一对流问题的混合元解的经典性质.53回顾半离散化的非线性Galerkin混合元解的性质,并导出后续讨论需要的一些关于时间导数的估计.54讨论向后一步的Euler全离散化…  相似文献   

9.
The author and N. Ugleši? have recently introduced a new classification of topological spaces, strictly coarser than the shape type classification. The corresponding coarse shape theory is founded on the coarse shape category. In this paper several topological and shape invariants are considered with respect to the coarse shape. It is shown that the coarse shape domination preserves connectedness, shape dimension, movability, n-movability and strong movability. Further, stability is a coarse shape invariant. Moreover, the coarse shape and shape coincide on the class of stable spaces.  相似文献   

10.
We consider a scalar advection-diffusion problem and a recently proposed discontinuous Galerkin approximation, which employs discontinuous finite element spaces and suitable bilinear forms containing interface terms that ensure consistency. For the corresponding sparse, nonsymmetric linear system, we propose and study an additive, two-level overlapping Schwarz preconditioner, consisting of a coarse problem on a coarse triangulation and local solvers associated to a family of subdomains. This is a generalization of the corresponding overlapping method for approximations on continuous finite element spaces. Related to the lack of continuity of our approximation spaces, some interesting new features arise in our generalization, which have no analog in the conforming case. We prove an upper bound for the number of iterations obtained by using this preconditioner with GMRES, which is independent of the number of degrees of freedom of the original problem and the number of subdomains. The performance of the method is illustrated by several numerical experiments for different test problems using linear finite elements in two dimensions.

  相似文献   


11.
石钟慈  谢正辉 《计算数学》1997,19(3):313-328
1.引言设0是RZ中的有界多边形区域,其边界为Rfl.考虑下面的重调和Dirichlet问题:(1.1)的变分形式为:求。EHI(fi)使得对?/EL‘(m,问题(1.幻的唯一可解性可由冯(m上的M线性型的强制性和连续性以及La。Mlgram定理得出(of[4]).令人一{丸)是n的一个三角剖分,并且满足最小角条件,其中h是它的网格参数.设Vh为Money元空间[41.问题(1.2)的有限元离散问题为:求。eVh使得当有限元参数人很小时,这个方程组很大,而且矩阵A的条件数变得非常大,直接求解,存贮量及计算量都很大.如果B可逆,则方程组(1.4)等…  相似文献   

12.
罗振东  王烈衡 《计算数学》1998,20(4):431-448
In this paper, a fully discrete format of nonlinear Galerkin mixed element method with backward one-step Euler discretization of time for the non stationary conduction-convection problems is presented. The scheme is based on two finite element spaces XH and Xh for the approximation of the velocity, defined respectively on a coarse grid with grids size H and another fine grid with grid size h<< H, a finite element space Mh for the approximation of the pressure and two finite element spaces AH and Wh, for the approximation of the temperature,also defined respectivply on the coarse grid with grid size H and another fine grid with grid size h. The existence and the convergence of the fully discrete mixed element solution are shown. The scheme consists in using standard backward one step Euler-Galerkin fully discrete format at first L0 steps (L0 2) on fine grid with grid size h, but using nonlinear Galerkin mixed element method of backward one step Euler-Galerkin fully discrete format through L0 + 1 step to end step. We have proved that the fully discrete nonlinear Galerkin mixed element procedure with respect to the coarse grid spaces with grid size H holds superconvergence.  相似文献   

13.
Summary. Two-level domain decomposition methods are developed for a simple nonconforming approximation of second order elliptic problems. A bound is established for the condition number of these iterative methods, that grows only logarithmically with the number of degrees of freedom in each subregion. This bound holds for two and three dimensions and is independent of jumps in the value of the coefficients and number of subregions. We introduce face coarse spaces, and isomorphisms to map between conforming and nonconforming spaces. ReceivedMarch 1, 1995 / Revised version received January 16, 1996  相似文献   

14.
Domain decomposition for multiscale PDEs   总被引:3,自引:1,他引:2  
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte–Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e., two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method. We would like to thank Bill McLean for very useful discussions concerning this work. We would also like to thank Maksymilian Dryja for helping us to improve the result in Theorem 4.3.  相似文献   

15.
We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.  相似文献   

16.
17.
Asymptotic hereditary asphericity (AHA) is a coarse property introduced by Januszkiewicz and ?wia?tkowski in the context of systolic complexes and groups. We show, that spaces of asymptotic dimension 1 are all AHA.  相似文献   

18.
本文定义了George和Veeramani意义下的模糊度量空间的强嵌入,证明了可强嵌入的模糊度量空间能够粗嵌入到Hilbert空间.另外还证明了强嵌入在模糊度量空间的粗范畴下是不变的,并给出了模糊度量空间强嵌入的一些等价刻画.  相似文献   

19.
In this paper, we study nonlinear embeddings between Banach spaces. More specifically, the goal of this paper is to study weaker versions of coarse and uniform embeddability, and to provide suggestive evidences that those weaker embeddings may be stronger than one would think. We do such by proving that many known results regarding coarse and uniform embeddability remain valid for those weaker notions of embeddability.  相似文献   

20.
Multigrid methods for discretized partial differential problems using nonnested conforming and nonconforming finite elements are here defined in the general setting. The coarse‐grid corrections of these multigrid methods make use of different finite element spaces from those on the finest grid. In general, the finite element spaces on the finest grid are nonnested, while the spaces are nested on the coarse grids. An abstract convergence theory is developed for these multigrid methods for differential problems without full elliptic regularity. This theory applies to multigrid methods of nonnested conforming and nonconforming finite elements with the coarse‐grid corrections established on nested conforming finite element spaces. Uniform convergence rates (independent of the number of grid levels) are obtained for both the V and W‐cycle methods with one smoothing on all coarse grids and with a sufficiently large number of smoothings solely on the finest grid. In some cases, these uniform rates are attained even with one smoothing on all grids. The present theory also applies to multigrid methods for discretized partial differential problems using mixed finite element methods. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 265–284, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号