首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

2.
The chemistry, structure, and properties of spinel ferrites are largely governed by the method of preparation. The metal carboxylato-hydrazinate precursors are known to yield nanosized oxides at a comparatively lower temperature. In this study, we are reporting the synthesis of one such precursor, cobalt nickel ferrous fumarato-hydrazinate which decomposes autocatalytically to give cobalt nickel ferrite nanoparticles. The XRD study of this decomposed product confirms the formation of single-phase spinel, i.e., Co0.5Ni0.5Fe2O4. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric (TG), and differential scanning calorimetric (DSC) analysis. The precursor has also been characterized by FTIR, EDX, and chemical analysis, and its chemical composition has been determined as Co0.5Ni0.5Fe2(C4H2O4)3·6N2H4.  相似文献   

3.
Facetted nickel ferrite (NiFe2O4) and bunsenite [(Ni,Fe)O] nanocrystals were grown from the decomposition of iron and nickel nitrate precursors using an inductively coupled plasma reactor. The full range of the two-phase region of the Fe2O3–NiO pseudo-equilibrium phase diagram was investigated by producing nanopowders with bulk Ni/(Ni + Fe) ratios of 0.33, 0.4, 0.5, 0.75 and 1.0. A Ni-poor [Ni/(Ni + Fe) ≤ 0.5] precursor solution produced truncated octahedron nanocrystals, whereas nanocubes were obtained at higher ratios [Ni/(Ni + Fe) ≈ 1]. In both cases, it is shown that the nanocrystals adopt a morphology close to the Wulff shape of the crystalline system (spinel and NaCl, respectively). As the bulk Ni/(Ni + Fe) ratio increases from 0.33 (the stoechiometric composition of nickel ferrite), bunsenite is epitaxially segregated on the {110} and {111} facets of nickel ferrite, while leaving the NiFe2O4 {100} facets exposed. A precursor solution at a Ni/(Ni + Fe) ratio of 0.75 gave an (Ni,Fe)O-rich nanopowder with a random and irregular interconnected morphology. The structure of these nanocrystals can be understood in terms of their thermal history in the plasma reactor. These results highlights the possibility of producing organized multi-phased nanomaterials of binary systems having two phases stable at high temperatures, using a method known to be easily scalable.  相似文献   

4.
The solid-state synthesis of undoped K0.5Na0.5NbO3 (KNN) and KNN doped with 1, 2 and 6 mol% Sr, from potassium, sodium and strontium carbonates with niobium pentoxide, was studied using thermal analysis and in situ high-temperature X-ray diffraction (HT-XRD). The thermogravimetry and the differential thermal analyses with evolved-gas analyses showed that the carbonates, which were previously reacted with the moisture in the air to form hydrogen carbonates, partly decomposed when heated to 200 °C. In the temperature interval where the reaction was observed, i.e., between 200 and 750 °C, all the samples exhibited the main mass loss in two steps. The first step starts at around 400 °C and finishes at 540 °C, and the second step has an onset at 540 °C and finishes with the end of the reaction between 630 and 675 °C, depending on the particle size distribution of the Nb2O5 precursor. According to the HT-XRD analysis, the perovskite phase is formed at 450 °C for all the samples, regardless of the Sr content. The formation of a polyniobate phase with a tetragonal tungsten bronze structure was detected by HT-XRD in the KNN with the largest amount of Sr dopant, i.e., 6 mol% of Sr, at 600 °C.  相似文献   

5.
Uniform spinel ferrite CoFe2O4 nanoparticles with average diameter of 40 nm were fabricated by a novel glycol-assisted autocombustion method. The as-prepared powders were characterized by X-ray diffraction, transmission electron microscopy and Raman spectrum. The room temperature magnetic property of the nanoparticles was examined, indicating the presence of an ordered magnetic structure in the spinel system. The electrochemical tests show that the as-prepared nanoparticles exhibits excellent electrochemical cycleability. The simple synthetic route can be applied to as a general method for the fabrication of other functional nanomaterials.  相似文献   

6.
Nanosized cobalt aluminate (CoAl2O4) was prepared by thermolysis of heteronuclear coordination compound, namely [Al2Co(C2O4)4(OH2)6]. The synthesized precursor was characterized by chemical analysis, vibrational spectra and thermal analysis. The cobalt aluminate obtained after a heating treatment of the precursor at 700 °C was characterized by IR, XRD, TEM coupled with SAED measurements. Two types of carbon-based electrodes, glassy carbon and boron-doped diamond electrodes were decorated with the obtained cobalt aluminate in order to enhance the electroanalytical performance for the tetracycline (TC) detection in the aqueous solutions. Cyclic voltammetry technique was used to determine the effect of the nanosized CoAl2O4 on the electrochemical oxidation of TC and as consequence, for TC detection at both carbon-based electrodes. The obtained cobalt aluminate exhibited the electrocatalytic activity toward TC detection in direct relation with the type of the carbon substrate, which allowed enhancing the electroanalytical parameters of TC detection in the aqueous solution.  相似文献   

7.
LiNi0.5Mn1.5O4 powders were prepared through polymer-pyrolysis method. XRD and TEM analysis indicated that the pure spinel structure was formed at around 450 °C due to the very homogeneous intermixing of cations at the atomic scale in the starting precursor in this method, while the well-defined octahedral crystals appeared at a relatively high calcination temperature of 900 °C with a uniform particle size of about 100 nm. When cycled between 3.5 and 4.9 V at a current density of 50 mA/g, the as prepared LiNi0.5Mn1.5O4 delivered an initial discharge capacity of 112.9 mAh/g and demonstrated an excellent cyclability with 97.3% capacity retentive after 50 cycles.  相似文献   

8.
Ni0.6Zn0.4Fe2O4 nano-particles have been synthesized by self-propagating auto-combustion of nickel zinc ferrous fumarato-hydrazinate complex. The precursor complex has been characterized by chemical analysis, IR, AAS, thermal analysis and isothermal mass loss studies. The precursor on ignition undergoes self-propagating auto combustion to give Ni0.6Zn0.4Fe2O4. The X-ray diffraction studies confirmed the single phase formation of nano-size ‘as synthesized’ Ni0.6Zn0.4Fe2O4. TEM observation showed the average particle size to be 20 nm. Infrared and magnetization studies were also carried out on the ‘as synthesized’ Ni0.6Zn0.4Fe2O4. The lower value of saturation magnetization and higher Curie temperature of ‘as synthesized’ ferrite also hint at the nano size nature.  相似文献   

9.
Nanoparticles of the spinel ferrite, Co0.6Ni0.4Fe2O4 have been synthesized by the precursor combustion technique. This synthetic route makes use of a novel precursor viz. metal fumarato hydrazinate which decomposes autocatalytically after ignition to yield nanosized spinel ferrite. The X-ray powder diffraction of the ??as prepared?? oxide confirms the formation of monophasic nanocrystalline cobalt nickel ferrite. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been fixed as Co0.6Ni0.4Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ??as prepared?? oxide was determined by ac susceptibility measurements.  相似文献   

10.
The SrFe12O19/poly (vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol-gel assisted electrospinning with ferric nitrate, strontium nitrate and PVP as starting reagents. Subsequently, the M-type strontium ferrite (SrFe12O19) nanofibers were derived from calcination of these precursors at 750–1,000 °C.The composite precursors and strontium ferrite nanofibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The structural evolution process of strontium ferrite consists of the thermal decomposition and M-type strontium ferrite formation. After calcined at 750 °C for 2 h the single M-type strontium ferrite phase is formed by reactions of iron oxide and strontium oxide produced during the precursor decomposition process. The nanofiber morphology, diameter, crystallite size and grain morphology are mainly influenced by the calcination temperature and holding time. The SrFe12O19 nanofibers characterized with diameters of around 100 nm and a necklace-like structure obtained at 900 °C for 2 h, which is fabricated by nanosized particles about 60 nm with the plate-like morphology elongated in the preferred direction perpendicular to the c-axis, show the optimized magnetic property with saturation magnetization 59 A m2 kg−1 and coercivity 521 kA m−1. It is found that the single domain critical size for these M-type strontium ferrite nanofibers is around 60 nm.  相似文献   

11.
Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g?1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g?1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g?1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.  相似文献   

12.
Nickel ferrite nanoparticle is a soft magnetic material whose appealing properties as well as various technical applications have rendered it as one of the most attractive class of materials; its technical applications range from its utility as a sensor and catalyst to its utility in biomedical processes. The present paper focuses first on the synthesis of NiFe2O4 nanoparticles through co-precipitation method resulting in calcined nanoparticles that were achieved at different times and at a constant temperature (773 k). Afterward, they were dispersed in water that was mixed by chitosan. Chitosan was bonded on the surface of nanoparticles by controlling the pH of media. In order to assess the structural and magnetic properties of nanoparticles, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) analyses were conducted at room temperature. As per the results of XRD analysis, the pure NiFe2O4 was synthesized. Additionally, nanoparticles grew in size by extending the calcination process duration. TEM micrographs were used to determine the size and shape of particle; the obtained results indicate that the particle size was in a range of 17–30 nm and of a circular shape. The proper chitosan covering was also indicated by FTIR results. The VSM analysis also revealed that the saturated magnetization of NiFe2O4 nanoparticles stood in a range of 29 emu/g and 45 Qe. A stable maximum temperature ranging from 30 to 42 was successfully achieved within 10 min. Also, a specific absorption rate of up to 8.4 W/g was achieved. The study results revealed that the SAR parameter of the coated nickel ferrite nanoparticle is more than that of pure nickel ferrite or cobalt ferrite nanoparticles.  相似文献   

13.
LiNi0.5Mn1.5O4 cathode materials were successfully prepared by sol–gel method with two different Li sources. The effect of both lithium acetate and lithium hydroxide on physical and electrochemical performances of LiNi0.5Mn1.5O4 was investigated by scanning electron microscopy, Fourier transform infrared, X-ray diffraction, and electrochemical method. The structure of both samples is confirmed as typical cubic spinel with Fd3m space group, whichever lithium salt is adopted. The grain size of LiNi0.5Mn1.5O4 powder and its electrochemical behaviors are strongly affected by Li sources. For the samples prepared with lithium acetate, more spinel nucleation should form during the precalcination process, which was stimulated by the heat released from the combustion of extra organic acetate group. Therefore, the particle size of the obtained powder presents smaller average and wider distribution, which facilitates the initial discharge capacity and deteriorates the cycling performance. More seriously, there exists cation replacement of Li sites by transition metal elements, which causes channel block for Li ion transference and deteriorates the rate capability. The compound obtained with lithium hydroxide exhibits better electrochemical responses in terms of both cycling and rate properties due to higher crystallinity, moderate particle size, narrow size distribution and lower transition cation substitute content.  相似文献   

14.
Nanocrystalline cobalt ferrite powders were synthesized by hydrothermal treatment of co-precipitated hydroxides in the conditions of an external heating of the autoclave and under microwave heating of the reaction medium. In the microwave-heating mode, the prenucleation clusters formed under ultrasonic treatment of a suspended mixture of cobalt and iron hydroxides is transformed into CoFe2O4 nanocrystals during the first minute of synthesis at a temperature satisfying the equilibrium-existence conditions of cobalt ferrite. In the case of a slow external heating of the autoclave, there is no effect of this kind, which is attributed to the disintegration of the prenucleation clusters before the dehydration of the hydroxides to give crystalline cobalt ferrite becomes thermodynamically favorable. The main factor determining the increase in the formation rate of crystallites of CoFe2O4 nanopowders and the decrease in their size is the generation of prenucleation centers in the starting mixture of cobalt and iron hydroxides.  相似文献   

15.
Nano-crystalline La0.8Sr0.2Co0.5Fe0.5O3±δ powder has been successfully synthesized by microwave assisted sol–gel (MWSG) method. The decomposition and crystallization behavior of the gel-precursor was studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis. From the result of FT-IR and X-ray diffraction patterns, it is found that a perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was formed by irradiating the precursor at 700 W for 3 min, but the well-crystalline perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was obtained at 700 W for 35 min. Morphological and specific area analysis of the powder were done by transmission electron microscopy (TEM), scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET). The surface areas measured was 38.9 m2/g and the grain size was ∼23 nm. Electrochemical properties of pure LSCF cathode on YSZ electrolyte at intermediate temperatures were investigated by using AC impedance analyzer, which shows a low area specific resistance (0.077 Ω cm2 at 1073 K and 0.672 Ω cm2 at 953 K). Moreover, the synthesis period of 20 h usually observed for conventional heating mode is reduced to a few minutes. Thus, the MWSG method is proved to be a novel, extremely facile, time-saving and energy-efficient route to synthesize LSCF powders.  相似文献   

16.
Nanoparticles of the spinel ferrite, Co1?x Ni x Fe2O4 (x?=?0, 0.2, 0.3) have been synthesized by the precursor combustion technique. Novel precursors of metal fumarato-hydrazinate have been employed to yield the nanosized spinel ferrite. A characteristic feature of these precursors is that they decompose autocatalytically after ignition to give the monophasic nanocrystalline ferrite. This fact is corroborated by X-ray powder diffraction analysis. The thermal decomposition pattern of the precursors has been studied by isothermal thermogravimetric and differential thermal analysis. In order to fix the chemical composition, the precursors have been characterized by FTIR and chemical analysis and their chemical composition has been fixed accordingly. The Curie temperature of the ??as-prepared?? oxide was determined by alternating current susceptibility measurements.  相似文献   

17.
The authors report on the preparation of a hollow-structured cobalt ferrite (CoFe2O4) nanocomposite for use in a non-enzymatic sensor for hydrogen peroxide (H2O2). Silica (SiO2) nanoparticles were exploited as template for the deposition of Fe3O4/CoFe2O4 nanosheets, which was followed by the removal of SiO2 template under mild conditions. This leads to the formation of hollow-structured Fe3O4/CoFe2O4 interconnected nanosheets with cubic spinel structure of high crystallinity. The material was placed on a glassy carbon electrode where it acts as a viable sensor for non-enzymatic determination of H2O2. Operated at a potential of ?0.45 V vs. Ag/AgCl in 0.1 M NaOH solution, the modified GCE has a sensitivity of 17 nA μM?1 cm?2, a linear response in the range of 10 to 1200 μM H2O2 concentration range, and a 2.5 μM detection limit. The sensor is reproducible and stable and was applied to the analysis of spiked urine samples, where it provided excellent recoveries.
Graphical abstract Schematic of a cobalt ferrite (CoFe2O4) hollow structure for use in electrochemical determination of H2O2. The sensor shows a low detection limit, a wide linear range, and excellent selectivity for H2O2.
  相似文献   

18.
Single-phase ZnAl2O4 nanoparticles with the spinel structure were successfully synthesized using a modified polyacrylamide gel method according to the atomic ratio of Zn to Al = 1: 1.8. The as-prepared samples were characterized by means of X-ray powder diffraction (XRD), thermogravimetric analysis (TG), differential scanning calorimetry analysis (DSC), field-emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL) spectra. XRD patterns show that the pure phase of ZnAl2O4 is obtained after heating the xerogel at 900°C for 5 h in air. The SEM images reveal that the ZnAl2O4 nanoparticles have a narrow particle size distribution and the average particle size is around 45 nm. Photoluminescence (PL) spectra demonstrate the single phase ZnAl2O4 nanoparticles have an emission peak located at 469 nm when excited by 350 nm light. The phase structure, coordination mechanism, and luminescence properties have been discussed on the basis of the experimental results.  相似文献   

19.
MnCo2O4 spinel nanoparticles (NPs) have been prepared using Aloe vera gel solution. The characterization of prepared spinel was performed applying Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron spectroscope, scanning electron microscope and dynamic light scattering. The results manifested that the prepared nanoparticles were mainly spherical plus minor agglomeration with average size distribution between 35 and 60 nm. The catalytic activity of the prepared nanoparticles upon thermal degradation of ammonium perchlorate (AP) was evaluated applying differential scanning calorimetry and thermogravimetry instruments. MnCo2O4 nanoparticles increased the released heat of AP from 450 to 1480 J g?1 and decreased the decomposition temperature from 420 to 293 °C. The kinetic parameters obtained from Kissinger methods showed that the activation energy of AP thermal decomposition in the presence of MnCo2O4 NPs considerably decreased. Also, a mechanism has been proposed in the presence of catalyst for the process of thermal decomposition of AP.  相似文献   

20.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号